Solveeit Logo

Question

Question: Find the solution of the integral \(\dfrac{{\tan x}}{{\left( {\sec x + \tan x} \right)}}dx\)...

Find the solution of the integral tanx(secx+tanx)dx\dfrac{{\tan x}}{{\left( {\sec x + \tan x} \right)}}dx

Explanation

Solution

Hint : We have to integrate indefinite integral tanx(secx+tanx)dx\dfrac{{\tan x}}{{\left( {\sec x + \tan x} \right)}}dx with respect to xx. The process of differentiation and integration are inverses of each other. Hence, f(x)dx=f(x)+C\int {f'\left( x \right)} dx = f\left( x \right) + C where CC is the arbitrary constant called the constant of integration. We solve this function by rationalizing it and after rationalizing we will simplify it and substitute sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1. We will split the single integral into multiple integrals. We also know various standard integration formulae; we will put the values of standard formulae and obtain the final answer in terms of xx only.
Property for splitting the functions:
For functions f(x)f\left( x \right) and g(x)g\left( x \right), [f(x)±g(x)]dx=f(x)dx±g(x)\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]} dx = \int {f\left( x \right)} dx \pm \int {g\left( x \right)}
I.e. The indefinite integral of the sum/difference is equal to the sum/difference of integrals.

Complete step by step solution:
Given tanx(secx+tanx)dx\int {\dfrac{{\tan x}}{{(\sec x + \tan x)}}} dx
On rationalizing, we get
tanx(secx+tanx)×(secxtanx)(secxtanx)dx\Rightarrow \int {\dfrac{{\tan x}}{{(\sec x + \tan x)}} \times \dfrac{{(\sec x - \tan x)}}{{(\sec x - \tan x)}}} dx
tanx(secxtanx)sec2xtan2xdx\Rightarrow \int {\dfrac{{\tan x(\sec x - \tan x)}}{{{{\sec }^2}x - {{\tan }^2}x}}} dx
Simplify by multiplying
tanxsecxtan1xtan1xsec2xtan2xdx\Rightarrow \int {\dfrac{{\tan x\sec x - {{\tan }^1}x{{\tan }^1}x}}{{{{\sec }^2}x - {{\tan }^2}x}}} dx
Use the power rule xm+xn=xm+n{x^m} + {x^n} = {x^{m + n}} to combine the exponents.
tanxsecxtan1+1xsec2xtan2xdx\Rightarrow \int {\dfrac{{\tan x\sec x - {{\tan }^{1 + 1}}x}}{{{{\sec }^2}x - {{\tan }^2}x}}} dx
tanxsecxtan2xsec2xtan2xdx\Rightarrow \int {\dfrac{{\tan x\sec x - {{\tan }^2}x}}{{{{\sec }^2}x - {{\tan }^2}x}}} dx
We know that 1+tan2x=sec2x1 + {\tan ^2}x = {\sec ^2}x. Therefore, sec2xtan2x=1{\sec ^2}x - {\tan ^2}x = 1
tanxsecxtan2x1dx\Rightarrow \int {\dfrac{{\tan x\sec x - {{\tan }^2}x}}{1}} dx
(tanxsecxtan2x)dx\Rightarrow \int {\left( {\tan x\sec x - {{\tan }^2}x} \right)} dx
Split the single integral into multiple integrals.
tanxsecxdxtan2xdx\Rightarrow \int {\tan x\sec xdx - \int {{{\tan }^2}} } xdx
Put tan2x=sec2x+1{\tan ^2}x = {\sec ^2}x + 1.
tanxsecxdx(sec2x1)dx\Rightarrow \int {\tan x\sec xdx} - \int {({{\sec }^2}x - 1)dx}
Split the single integral into multiple integrals.
tanxsecxdxsec2xdx+1dx\Rightarrow \int {\tan x\sec x} dx - \int {{{\sec }^2}xdx + \int {1dx} }
Since the derivative of secx\sec x is secxtanx\sec x\tan x, the integral of secxtanx\sec x\tan x is secx\sec x and Integral of sec2x{\sec ^2}x is tanx\tan x.
secxtanx+x+C\Rightarrow \sec x - \tan x + x + C
Where CC is the arbitrary constant called the constant of integration.
Thus, the integration of tanx(secx+tanx)dx\dfrac{{\tan x}}{{\left( {\sec x + \tan x} \right)}}dx is, secxtanx+x+C\sec x - \tan x + x + C where CC is the integration constant.
So, the correct answer is “secxtanx+x+C\sec x - \tan x + x + C”.

Note : We have indefinite integral that is why we added integration constant CC. If we have a definite integral we do not add integration constant. There are different methods to solve indefinite integral questions. Here, in the given question we applied [f(x)±g(x)]dx=f(x)dx±g(x)\int {\left[ {f\left( x \right) \pm g\left( x \right)} \right]} dx = \int {f\left( x \right)} dx \pm \int {g\left( x \right)} property. Suppose we have given any constant kk with the integral then we will apply another property: [kf(x)±kg(x)]dx=kf(x)±kg(x)\int {\left[ {kf\left( x \right) \pm kg\left( x \right)} \right]} dx = k\int {f\left( x \right)} \pm k\int {g\left( x \right)} . The only difference between these two properties is, we kept the constant kk outside of integral.