Question
Question: Find the solution of the integral \[\dfrac{{\sin 2x}}{{{{\sin }^4}x + {{\cos }^4}x}}\] ?...
Find the solution of the integral sin4x+cos4xsin2x ?
Solution
We have to integrate sin4x+cos4xsin2xwith respect to ‘x’. We solve this using a substitution method. We simplify the integrand using the formula sin2x=2sinx.cosx and by dividing the numerator and the denominator by cos4x. We also know the tangent function is the ratio of sine function to cosine function. After simplification we use the substitution method and we put the final answer in terms of ‘x’ only.
Complete step by step answer:
Given ∫sin4x+cos4xsin2xdx
Now we know that sin2x=2sinx.cosx
⇒∫sin4x+cos4x2sinx.cosxdx
Divide the numerator and the denominator by cos4x
∫sin4x+cos4xsin2xdx=∫(cos4xsin4x+cos4x)(cos4x2sinx.cosx)dx
Splitting the terms in denominator,
∫sin4x+cos4xsin2xdx=∫(cos4xsin4x+cos4xcos4x)(cos4x2sinx.cosx)dx
Cancelling we have
∫sin4x+cos4xsin2xdx=∫(cos4xsin4x+1)(cos3x2sinx)dx
⇒∫sin4x+cos4xsin2xdx=2∫(cos4xsin4x+1)(cosxsinx×cos2x1)dx
We know that secant and cosecant are reciprocal function and using the definition of tangent function we have,
∫sin4x+cos4xsin2xdx=∫(tan4x+1)2(tanx.sec2x)dx
Now to simplify thus easily we use a substitute method.
Let’s put t=tan2xthen differentiating we have
dt=2tanxsec2xdx
Then above integral becomes
∫sin4x+cos4xsin2xdx=∫(t2+1)dt
⇒∫sin4x+cos4xsin2xdx=∫(1+t2)dt
But we know the integration of ∫1+x2dx=tan−1x+c
∫sin4x+cos4xsin2xdx=tan−1(t)+c
Where ‘c’ is the integration constant.
But we have substituted t=tan2x, then we have
∴∫sin4x+cos4xsin2xdx=tan−1(tan2x)+c
Thus, the integration of sin4x+cos4xsin2x is tan−1(tan2x)+c, where ‘c’ is integration constant.
Note: We have indefinite integral that is why we added integration constant. If we have a definite integral we do not add integration constant. We know the integration formulas which yield inverse trigonometric functions:
∫a2−x2dx=sin−1(ax)+c
⇒∫a2+x2dx=tan−1(ax)+c
⇒∫xx2−a2dx=a1sec−1(a∣x∣)+c
We use them according to the given problem.