Solveeit Logo

Question

Question: Find the solution of the integral \[\dfrac{{\sin 2x}}{{{{\sin }^4}x + {{\cos }^4}x}}\] ?...

Find the solution of the integral sin2xsin4x+cos4x\dfrac{{\sin 2x}}{{{{\sin }^4}x + {{\cos }^4}x}} ?

Explanation

Solution

We have to integrate sin2xsin4x+cos4x\dfrac{{\sin 2x}}{{{{\sin }^4}x + {{\cos }^4}x}}with respect to ‘x’. We solve this using a substitution method. We simplify the integrand using the formula sin2x=2sinx.cosx\sin 2x = 2\sin x.\cos x and by dividing the numerator and the denominator by cos4x{\cos ^4}x. We also know the tangent function is the ratio of sine function to cosine function. After simplification we use the substitution method and we put the final answer in terms of ‘x’ only.

Complete step by step answer:
Given sin2xsin4x+cos4xdx\int {\dfrac{{\sin 2x}}{{{{\sin }^4}x + {{\cos }^4}x}}} dx
Now we know that sin2x=2sinx.cosx\sin 2x = 2\sin x.\cos x
2sinx.cosxsin4x+cos4xdx\Rightarrow \int {\dfrac{{2\sin x.\cos x}}{{{{\sin }^4}x + {{\cos }^4}x}}} dx
Divide the numerator and the denominator by cos4x{\cos ^4}x
sin2xsin4x+cos4xdx=(2sinx.cosxcos4x)(sin4x+cos4xcos4x)dx\int {\dfrac{{\sin 2x}}{{{{\sin }^4}x + {{\cos }^4}x}}} dx= \int {\dfrac{{\left( {\dfrac{{2\sin x.\cos x}}{{{{\cos }^4}x}}} \right)}}{{\left( {\dfrac{{{{\sin }^4}x + {{\cos }^4}x}}{{{{\cos }^4}x}}} \right)}}} dx
Splitting the terms in denominator,
sin2xsin4x+cos4xdx=(2sinx.cosxcos4x)(sin4xcos4x+cos4xcos4x)dx\int {\dfrac{{\sin 2x}}{{{{\sin }^4}x + {{\cos }^4}x}}} dx= \int {\dfrac{{\left( {\dfrac{{2\sin x.\cos x}}{{{{\cos }^4}x}}} \right)}}{{\left( {\dfrac{{{{\sin }^4}x}}{{{{\cos }^4}x}} + \dfrac{{{{\cos }^4}x}}{{{{\cos }^4}x}}} \right)}}} dx

Cancelling we have
sin2xsin4x+cos4xdx=(2sinxcos3x)(sin4xcos4x+1)dx\int {\dfrac{{\sin 2x}}{{{{\sin }^4}x + {{\cos }^4}x}}} dx = \int {\dfrac{{\left( {\dfrac{{2\sin x}}{{{{\cos }^3}x}}} \right)}}{{\left( {\dfrac{{{{\sin }^4}x}}{{{{\cos }^4}x}} + 1} \right)}}} dx
sin2xsin4x+cos4xdx=2(sinxcosx×1cos2x)(sin4xcos4x+1)dx\Rightarrow \int {\dfrac{{\sin 2x}}{{{{\sin }^4}x + {{\cos }^4}x}}} dx = 2\int {\dfrac{{\left( {\dfrac{{\sin x}}{{\cos x}} \times \dfrac{1}{{{{\cos }^2}x}}} \right)}}{{\left( {\dfrac{{{{\sin }^4}x}}{{{{\cos }^4}x}} + 1} \right)}}} dx
We know that secant and cosecant are reciprocal function and using the definition of tangent function we have,
sin2xsin4x+cos4xdx=2(tanx.sec2x)(tan4x+1)dx\int {\dfrac{{\sin 2x}}{{{{\sin }^4}x + {{\cos }^4}x}}} dx = \int {\dfrac{{2\left( {\tan x.{{\sec }^2}x} \right)}}{{\left( {{{\tan }^4}x + 1} \right)}}} dx
Now to simplify thus easily we use a substitute method.
Let’s put t=tan2xt = {\tan ^2}xthen differentiating we have
dt=2tanxsec2xdxdt = 2\tan x{\sec ^2}xdx

Then above integral becomes
sin2xsin4x+cos4xdx=dt(t2+1)\int {\dfrac{{\sin 2x}}{{{{\sin }^4}x + {{\cos }^4}x}}} dx = \int {\dfrac{{dt}}{{\left( {{t^2} + 1} \right)}}}
sin2xsin4x+cos4xdx=dt(1+t2)\Rightarrow \int {\dfrac{{\sin 2x}}{{{{\sin }^4}x + {{\cos }^4}x}}} dx= \int {\dfrac{{dt}}{{\left( {1 + {t^2}} \right)}}}
But we know the integration of dx1+x2=tan1x+c\int {\dfrac{{dx}}{{1 + {x^2}}}} = {\tan ^{ - 1}}x + c
sin2xsin4x+cos4xdx=tan1(t)+c\int {\dfrac{{\sin 2x}}{{{{\sin }^4}x + {{\cos }^4}x}}} dx= {\tan ^{ - 1}}(t) + c
Where ‘c’ is the integration constant.
But we have substituted t=tan2xt = {\tan ^2}x, then we have
sin2xsin4x+cos4xdx=tan1(tan2x)+c\therefore \int {\dfrac{{\sin 2x}}{{{{\sin }^4}x + {{\cos }^4}x}}} dx = {\tan ^{ - 1}}({\tan ^2}x) + c

Thus, the integration of sin2xsin4x+cos4x\dfrac{{\sin 2x}}{{{{\sin }^4}x + {{\cos }^4}x}} is tan1(tan2x)+c{\tan ^{ - 1}}({\tan ^2}x) + c, where ‘c’ is integration constant.

Note: We have indefinite integral that is why we added integration constant. If we have a definite integral we do not add integration constant. We know the integration formulas which yield inverse trigonometric functions:
dxa2x2=sin1(xa)+c\int {\dfrac{{dx}}{{\sqrt {{a^2} - {x^2}} }} = {{\sin }^{ - 1}}\left( {\dfrac{x}{a}} \right)} + c
dxa2+x2=tan1(xa)+c\Rightarrow \int {\dfrac{{dx}}{{{a^2} + {x^2}}} = {{\tan }^{ - 1}}\left( {\dfrac{x}{a}} \right)} + c
dxxx2a2=1asec1(xa)+c\Rightarrow \int {\dfrac{{dx}}{{x\sqrt {{x^2} - {a^2}} }} = \dfrac{1}{a}{{\sec }^{ - 1}}\left( {\dfrac{{|x|}}{a}} \right)} + c
We use them according to the given problem.