Solveeit Logo

Question

Question: Find the solution of the differential equation \(\dfrac{dy}{dx}=\dfrac{xy}{{{x}^{2}}+{{y}^{2}}}\)....

Find the solution of the differential equation dydx=xyx2+y2\dfrac{dy}{dx}=\dfrac{xy}{{{x}^{2}}+{{y}^{2}}}.

Explanation

Solution

We first cross multiplies the given expression dydx=xyx2+y2\dfrac{dy}{dx}=\dfrac{xy}{{{x}^{2}}+{{y}^{2}}}. Then we interchange the terms and divide with y3{{y}^{3}} to find the differential form of xy\dfrac{x}{y}. We then integrate the expression of dyy=xyd(xy)\dfrac{dy}{y}=\dfrac{x}{y}d\left( \dfrac{x}{y} \right). We simplify the integration to find the solution.

Complete step by step answer:
We first cross multiplies the given expression dydx=xyx2+y2\dfrac{dy}{dx}=\dfrac{xy}{{{x}^{2}}+{{y}^{2}}}.
We get x2dy+y2dy=xydx{{x}^{2}}dy+{{y}^{2}}dy=xydx. Changing sides, we get y2dy=xydxx2dy{{y}^{2}}dy=xydx-{{x}^{2}}dy.
We take xx common on the right side and get

\Rightarrow {{y}^{2}}dy=x\left( ydx-xdy \right) \\\ $$ We now divide with ${{y}^{3}}$ both sides to get $$\dfrac{{{y}^{2}}dy}{{{y}^{3}}}=\dfrac{x\left( ydx-xdy \right)}{{{y}^{3}}} \\\ \Rightarrow \dfrac{dy}{y}=\dfrac{x}{y}\times \dfrac{ydx-xdy}{{{y}^{2}}} \\\ $$ We now take the term $$\dfrac{x}{y}$$ and find its differential form. $\dfrac{d\left( \dfrac{x}{y} \right)}{dx}=\dfrac{y-x\dfrac{dy}{dx}}{{{y}^{2}}} \\\ \Rightarrow d\left( \dfrac{x}{y} \right)=\dfrac{ydx-xdy}{{{y}^{2}}} \\\ $ We can write $$\dfrac{dy}{y}=\dfrac{x}{y}\times \dfrac{ydx-xdy}{{{y}^{2}}} \\\ \Rightarrow \dfrac{dy}{y}=\dfrac{x}{y}\times d\left( \dfrac{x}{y} \right) \\\ $$ Now we take the integration non both sides $$\int{\dfrac{dy}{y}}=\int{\dfrac{x}{y}d\left( \dfrac{x}{y} \right)}+c$$ We know the integration form $$\int{\dfrac{dm}{m}}=\log \left| m \right|+c$$ and $$\int{{{m}^{n}}dm}=\dfrac{{{m}^{n+1}}}{n+1}+c$$. $$\int{\dfrac{dy}{y}}=\int{\dfrac{x}{y}d\left( \dfrac{x}{y} \right)}+c \\\ \Rightarrow \log \left| y \right|=\dfrac{{{x}^{2}}}{2{{y}^{2}}}+c \\\ \Rightarrow 2\log \left| y \right|=\dfrac{{{x}^{2}}}{{{y}^{2}}}+k \\\ $$ We took $k=2c$. Both k and c are constants. We now apply the logarithmic formula of $$a\log b=\log {{b}^{a}}$$. $$2\log \left| y \right|=\dfrac{{{x}^{2}}}{{{y}^{2}}}+k \\\ \Rightarrow \log {{y}^{2}}=\dfrac{{{x}^{2}}}{{{y}^{2}}}+k \\\ \Rightarrow {{y}^{2}}={{e}^{\dfrac{{{x}^{2}}}{{{y}^{2}}}+k}}={{e}^{\dfrac{{{x}^{2}}}{{{y}^{2}}}}}{{e}^{k}} \\\ \Rightarrow {{y}^{2}}=K{{e}^{\dfrac{{{x}^{2}}}{{{y}^{2}}}}} \\\ $$ We again took $K={{e}^{k}}$. K is constant. The simplified solution of the differential equation $\dfrac{dy}{dx}=\dfrac{xy}{{{x}^{2}}+{{y}^{2}}}$ is $${{y}^{2}}=K{{e}^{\dfrac{{{x}^{2}}}{{{y}^{2}}}}}$$. **Note:** We can also take the equation in the form of $\dfrac{y}{x}$ as we take the variable $\dfrac{y}{x}=v$. Differentiating with respect to the term $x$, we get $\dfrac{dy}{dx}=v+x\dfrac{dv}{dx}$. We replace the values in the differential form and get $\dfrac{dy}{dx}=\dfrac{xy}{{{x}^{2}}+{{y}^{2}}} \\\ \Rightarrow \dfrac{dy}{dx}=v+x\dfrac{dv}{dx}=\dfrac{\dfrac{y}{x}}{1+{{\left( \dfrac{y}{x} \right)}^{2}}}=\dfrac{v}{1+{{v}^{2}}} \\\ \Rightarrow x\dfrac{dv}{dx}=\dfrac{v}{1+{{v}^{2}}}-v=\dfrac{-{{v}^{3}}}{1+{{v}^{2}}} \\\ \Rightarrow \dfrac{1+{{v}^{2}}}{{{v}^{3}}}dv=\dfrac{dx}{x} \\\ $ We integrate the equation to get the same solution of $${{y}^{2}}=K{{e}^{\dfrac{{{x}^{2}}}{{{y}^{2}}}}}$$.