Solveeit Logo

Question

Question: Find the solution of the differential equation: \(xdx+ydy+\dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}}=0\)...

Find the solution of the differential equation:
xdx+ydy+xdyydxx2+y2=0xdx+ydy+\dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}}=0 will be
x2+y22tan1x=c{{x}^{2}}+{{y}^{2}}-2{{\tan }^{-1}}x=c
x2+y2+2tan1(yx)=c{{x}^{2}}+{{y}^{2}}+2{{\tan }^{-1}}\left( \dfrac{y}{x} \right)=c
x2+y2+tan1(yx)=c{{x}^{2}}+{{y}^{2}}+{{\tan }^{-1}}\left( \dfrac{y}{x} \right)=c
x2+y2+2tan1(xy)=c{{x}^{2}}+{{y}^{2}}+2{{\tan }^{-1}}\left( \dfrac{x}{y} \right)=c

Explanation

Solution

Hint: Observe the term (xdyydxx2+y2)\left( \dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}} \right) which is written in form of differentiation of tan(yx) ddx(tan1yx)=xdydxyx2+y2 \begin{aligned} & {{\tan }^{-}}\left( \dfrac{y}{x} \right) \\\ & \Rightarrow \dfrac{d}{dx}\left( {{\tan }^{-1}}\dfrac{y}{x} \right)=\dfrac{x\dfrac{dy}{dx}-y}{{{x}^{2}}+{{y}^{2}}} \\\ \end{aligned}
And use the formula of fxndx=xn+1n+1f{{x}^{n}}dx=\dfrac{{{x}^{n}}+1}{n+1} to solve the given differential equation.

Complete step by step answer:
Given differential equation is
xdx+ydy+xdyydxx2+y2=0..............(i)xdx+ydy+\dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}}=0..............\left( i \right)
Here, we need to observe the term xdyydxx2+y2\dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}} and use the exact differentiable approach as xdyydxx2+y2\dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}} is the direct derivative of some term and we have to observe that only. So, let us directly integrate the equation (i) with the help of the mentioned method (directly applying integration to the given differential equation). So, we get:
xdx+ydy+xdyydxx2+y2=0\int{xdx+\int{ydy+\int{\dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}}=0}}}
We know the integration of xn{{x}^{n}} with respect ‘x’ is given as
xn+1n+1xndx=xn+1n+1\dfrac{{{x}^{n}}+1}{n+1}\Rightarrow \int{{{x}^{n}}dx=\dfrac{{{x}^{n}}+1}{n+1}}
So, we can replace the terms xdx,ydxx22,y22\int{xdx,\int{ydx\Rightarrow \dfrac{{{x}^{2}}}{2},\dfrac{{{y}^{2}}}{2}}} respectively by using the identity xn=xn+1n+1\int{{{x}^{n}}=\dfrac{{{x}^{n}}+1}{n+1}}
So, we get
x22+y22+xdyydxx2+y2+c=0.............(ii)\dfrac{{{x}^{2}}}{2}+\dfrac{{{y}^{2}}}{2}+\int{\dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}}+c=0.............\left( ii \right)}
Now, let us differentiate the term tan1(yx){{\tan }^{-1}}\left( \dfrac{y}{x} \right) with respect to ‘x’ so, we need to find
ddx(tan1(yx))=?\dfrac{d}{dx}\left( {{\tan }^{-1}}\left( \dfrac{y}{x} \right) \right)=?
As, we know the derivative of tan1x{{\tan }^{-1}}x w.r.t ‘x’ is
11+x2ddx(tan1x)=11+n2\dfrac{1}{1+{{x}^{2}}}\Rightarrow \dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{1+{{n}^{2}}}
And we need to use chain rule and division rule of derivative to differentiate the expression tan1(yx){{\tan }^{-1}}\left( \dfrac{y}{x} \right) chain rule will be used because tan1(yx){{\tan }^{-1}}\left( \dfrac{y}{x} \right) is a composite function i.e. algebraic function with inverse trigonometric function. Chain rule is given as
(fg(x))=f(g(x)).g(x)...............(iii){{\left( fg\left( x \right) \right)}^{'}}={{f}^{'}}\left( g\left( x \right) \right).{{g}^{'}}\left( x \right)...............\left( iii \right)
Division rule of derivative is given as
ddx(uv)=vdudxdudxv2................(iv)\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-\dfrac{du}{dx}}{{{v}^{2}}}................\left( iv \right)
Where ‘u’ and ‘v’ are two functions in fraction. Now let us differentiate ddx(tan1(yx))\dfrac{d}{dx}\left( {{\tan }^{-1}}\left( \dfrac{y}{x} \right) \right)
So, we get
ddx(tan1(yx))=11+(yx)2ddx(yx)\dfrac{d}{dx}\left( {{\tan }^{-1}}\left( \dfrac{y}{x} \right) \right)=\dfrac{1}{1+{{\left( \dfrac{y}{x} \right)}^{2}}}\dfrac{d}{dx}\left( \dfrac{y}{x} \right)
Where, we know
ddxtan1x=11+x2\dfrac{d}{dx}{{\tan }^{-1}}x=\dfrac{1}{1+{{x}^{2}}}
So, we get
ddx(tan1yx)=x2x2+y2ddx(yx)\dfrac{d}{dx}\left( {{\tan }^{-1}}\dfrac{y}{x} \right)=\dfrac{{{x}^{2}}}{{{x}^{2}}+{{y}^{2}}}\dfrac{d}{dx}\left( \dfrac{y}{x} \right)
Now, use the division rule of derivative given in equation (iv) by putting u = y and v = x. So, we get
ddxtan1(yx)=x2x2+y2xdydxydxdxx2 ddx(tan1yx)=xdydxyx2+y2 ddx(tan1yx)=1dx(xdyydxx2+y2) \begin{aligned} & \dfrac{d}{dx}{{\tan }^{-1}}\left( \dfrac{y}{x} \right)=\dfrac{{{x}^{2}}}{{{x}^{2}}+{{y}^{2}}}\dfrac{x\dfrac{dy}{dx}-y\dfrac{dx}{dx}}{{{x}^{2}}} \\\ & \dfrac{d}{dx}\left( {{\tan }^{-1}}\dfrac{y}{x} \right)=\dfrac{x\dfrac{dy}{dx}-y}{{{x}^{2}}+{{y}^{2}}} \\\ & \Rightarrow \dfrac{d}{dx}\left( {{\tan }^{-1}}\dfrac{y}{x} \right)=\dfrac{1}{dx}\left( \dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}} \right) \\\ \end{aligned}
Cancel out ‘dx’ from both sides, we get
d(tan1yx)=(xdyydxx2+y2)...............(v)d\left( {{\tan }^{-1}}\dfrac{y}{x} \right)=\left( \dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}} \right)...............\left( v \right)
Now, we can replace (xdyydxx2+y2)\left( \dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}} \right) in the equation (ii) by using the equation (v). So, we get equation (ii) as
x22+y22+d(tan1yx)+c1=0\dfrac{{{x}^{2}}}{2}+\dfrac{{{y}^{2}}}{2}+\int{d\left( {{\tan }^{-1}}\dfrac{y}{x} \right)+{{c}_{1}}=0}
Now, as we know integration of dx is x, similarly integration of
d(tan1yx)tan1(yx)d\left( {{\tan }^{-1}}\dfrac{y}{x} \right)\Rightarrow {{\tan }^{-1}}\left( \dfrac{y}{x} \right)
So, we get
x22+y22+tan1(yx)+c1=0 x2+y2+2tan1(yx)+2c1=0 \begin{aligned} & \dfrac{{{x}^{2}}}{2}+\dfrac{{{y}^{2}}}{2}+{{\tan }^{-1}}\left( \dfrac{y}{x} \right)+{{c}_{1}}=0 \\\ & \Rightarrow {{x}^{2}}+{{y}^{2}}+2{{\tan }^{-1}}\left( \dfrac{y}{x} \right)+2{{c}_{1}}=0 \\\ \end{aligned}
Hence, solution of the given differential equation will be
x2+y2+2tan1(yx)+2c1=0{{x}^{2}}+{{y}^{2}}+2{{\tan }^{-1}}\left( \dfrac{y}{x} \right)+2{{c}_{1}}=0
x2+y2+2tan1(yx)=2c1{{x}^{2}}+{{y}^{2}}+2{{\tan }^{-1}}\left( \dfrac{y}{x} \right)=-2{{c}_{1}}
Replace 2c1-2{{c}_{1}} by c, hence we get
x2+y2+2tan1(yx)=c{{x}^{2}}+{{y}^{2}}+2{{\tan }^{-1}}\left( \dfrac{y}{x} \right)=c
So, option (c) is correct.
Note: One may try to use linear, homogenous or variable separable methods to solve the given differential equation, which will be very complex approaches for these kinds of questions. So, try to observe the pattern and apply the required method observing,
xdyydxx2+y2=d(tan1(yd))\int{\dfrac{xdy-ydx}{{{x}^{2}}+{{y}^{2}}}=\int{d\left( {{\tan }^{-1}}\left( \dfrac{y}{d} \right) \right)}}
Is the key point of the question. Another approach for this question would be that we can put x=rsinθ,y=rcosθx=r\sin \theta ,y=r\cos \theta to the given expression.