Solveeit Logo

Question

Question: Find the solution of differential equation \(\frac{dy}{dx}\) = \(\frac{yƒ'(x)–y^{2}}{ƒ(x)}\) -...

Find the solution of differential equation dydx\frac{dy}{dx} = yƒ(x)y2ƒ(x)\frac{yƒ'(x)–y^{2}}{ƒ(x)} -

A

ƒ(x) = y (x – c)

B

ƒ(x) = y (c – x)

C

ƒ(x) = y (x + c)

D

None

Answer

ƒ(x) = y (x + c)

Explanation

Solution

The given equation is dydx\frac{dy}{dx} = yƒ(x)y2ƒ(x)\frac{yƒ'(x) - y^{2}}{ƒ(x)}

Ž yƒ¢ (x) dx – ƒ(x) dy = y2dx

Ž yƒ(x)dxƒ(x)dyy2\frac{yƒ'(x)dx - ƒ(x)dy}{y^{2}} = dx Ž d [ƒ(x)y]\left\lbrack \frac{ƒ(x)}{y} \right\rbrack = dx

On integration, we get

ƒ(x)y\frac{ƒ(x)}{y} = x + c Ž ƒ(x) = y(x + c)