Solveeit Logo

Question

Question: Find the solution of \[\;8\cos x\cos 2x\cos 4x = \dfrac{{\sin 6x}}{{\sin x}}\]...

Find the solution of   8cosxcos2xcos4x=sin6xsinx\;8\cos x\cos 2x\cos 4x = \dfrac{{\sin 6x}}{{\sin x}}

Explanation

Solution

We will first cross multiply and rewrite the expression. Then, we will make the formula, 2sinθcosθ=sin2θ2\sin \theta \cos \theta = \sin 2\theta till we get a single term. Then, we will get the form, sinα=sinβ\sin \alpha = \sin \beta and then apply the formula, α=nπ+(1)nβ\alpha = n\pi + {\left( { - 1} \right)^n}\beta to find the solution of the equation.

Complete step-by-step answer:
We have to find the solution of   8cosxcos2xcos4x=sin6xsinx\;8\cos x\cos 2x\cos 4x = \dfrac{{\sin 6x}}{{\sin x}}
Since, sinx\sin x is in the denominator, it cannot be equal to 0.
We will first cross multiply and rewrite the expression.
  8sinxcosxcos2xcos4x=sin6x\;8\sin x\cos x\cos 2x\cos 4x = \sin 6x
We know that 2sinθcosθ=sin2θ2\sin \theta \cos \theta = \sin 2\theta
Solving the LHS, we can write it as,
  4(2sinxcosx)cos2xcos4x=sin6x 4sin2xcos2xcos4x=sin6x  \;4\left( {2\sin x\cos x} \right)\cos 2x\cos 4x = \sin 6x \\\ \Rightarrow 4\sin 2x\cos 2x\cos 4x = \sin 6x \\\
Again we can form the formula of sin2θ\sin 2\theta in the LHS
  2(2sin2xcos2x)cos4x=sin6x 2sin4xcos4x=sin6x  \;2\left( {2\sin 2x\cos 2x} \right)\cos 4x = \sin 6x \\\ \Rightarrow 2\sin 4x\cos 4x = \sin 6x \\\
We can again form the formula,
  2sin4xcos4x=sin6x sin8x=sin6x  \;2\sin 4x\cos 4x = \sin 6x \\\ \Rightarrow \sin 8x = \sin 6x \\\
Now, we know that if sinα=sinβα=nπ+(1)nβ\sin \alpha = \sin \beta \Rightarrow \alpha = n\pi + {\left( { - 1} \right)^n}\beta
Then,
8x=nπ+(1)n6x8x = n\pi + {\left( { - 1} \right)^n}6x
If nn is an even number, let n=2mn = 2m, where mm is an integer.
8x=2mπ+6x 2x=2mπ x=mπ  8x = 2m\pi + 6x \\\ \Rightarrow 2x = 2m\pi \\\ \Rightarrow x = m\pi \\\
Now, let nn is an odd number, let n=2m+1n = 2m + 1, where mm is an integer.
8x=(2m+1)π6x 14x=(2m+1)π x=(2m+1)π14  8x = \left( {2m + 1} \right)\pi - 6x \\\ \Rightarrow 14x = \left( {2m + 1} \right)\pi \\\ \Rightarrow x = \dfrac{{\left( {2m + 1} \right)\pi }}{{14}} \\\

Note: One should know the formulas of trigonometry to simplify the given expression. Also, one must have knowledge about the general solution when two trigonometric expressions are given equal. Here, students can also apply the formula of 2cosAcosB2\cos A\cos B to simplify the expression.