Solveeit Logo

Question

Question: Find the solution for the given trigonometric equation: \[{\text{tan}}\theta + \tan 2\theta = \tan...

Find the solution for the given trigonometric equation:
tanθ+tan2θ=tan3θ{\text{tan}}\theta + \tan 2\theta = \tan 3\theta

Explanation

Solution

In this question, we will first convert the given function into sine and cosine function and then use trigonometric identities to the simplified expression. After this we will equate the different terms to zero to get the solution of each and finally combine them to get the solution for the given equation.

Complete step-by-step answer:
Given equation is:
tanθ+tan2θ=tan3θ{\text{tan}}\theta + \tan 2\theta = \tan 3\theta
Now, converting the tangent function in to sine and cosine function, we get:
sinθcosθ+sin2θcos2θ=sin3θcos3θ\dfrac{{\sin \theta }}{{\cos \theta }} + \dfrac{{\sin 2\theta }}{{\cos 2\theta }} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}
Solving the left hand side, we get:
sinθ×cos2θ+sin2θ×cosθcosθ×cos2θ=sin3θcos3θ\dfrac{{\sin \theta \times \cos 2\theta + \sin 2\theta \times \cos \theta }}{{\cos \theta \times \cos 2\theta }} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }} (1)
We know that:
Sin (A+B) =sinAcosB+cosAsinB\sin A\cos B + \cos A\sin B .
So, using this identity equation 1 can be written as:
sin(θ+2θ)cosθcos2θ=sin3θcos3θ\dfrac{{\sin (\theta + 2\theta )}}{{\cos \theta \cos 2\theta }} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }} (2)
Now, using the identity,cosAcosB=12(cos(AB)+cos(A+B)\cos A\cos B = \dfrac{1}{2}\left( {\cos (A - B) + \cos (A + B} \right)), we get:
sin(θ+2θ)12(cos(θ)+cos3θ)=sin3θcos3θ\dfrac{{\sin (\theta + 2\theta )}}{{\dfrac{1}{2}\left( {\cos ( - \theta ) + \cos 3\theta } \right)}} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}
2sin(3θ)(cos(θ)+cos3θ)=sin3θcos3θ\Rightarrow \dfrac{{2\sin (3\theta )}}{{\left( {\cos ( - \theta ) + \cos 3\theta } \right)}} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }}
We know that: cos(θ)=cosθ\cos ( - \theta ) = \cos \theta

Therefore, the above equation can written as
2sin(3θ)(cosθ+cos3θ)=sin3θcos3θ\dfrac{{2\sin (3\theta )}}{{\left( {\cos \theta + \cos 3\theta } \right)}} = \dfrac{{\sin 3\theta }}{{\cos 3\theta }} (3)
Now, rearranging the equation 3, we get:
2sin(3θ)(cos(θ)+cos3θ)sin3θcos3θ=0  \begin{gathered} \dfrac{{2\sin (3\theta )}}{{\left( {\cos (\theta ) + \cos 3\theta } \right)}} - \dfrac{{\sin 3\theta }}{{\cos 3\theta }} = 0 \\\ \\\ \end{gathered}
Taking the sin3θ\sin 3\theta term common, we get:
sin3θ(2(cos(θ)+cos3θ)1cos3θ)=0\sin 3\theta \left( {\dfrac{2}{{\left( {\cos (\theta ) + \cos 3\theta } \right)}} - \dfrac{1}{{\cos 3\theta }}} \right) = 0
Since, the products of two terms are zero. So the individual term will also be zero.
sin3θ=0\therefore \sin 3\theta = 0 (4)
and (2(cos(θ)+cos3θ)1cos3θ)=0\left( {\dfrac{2}{{\left( {\cos (\theta ) + \cos 3\theta } \right)}} - \dfrac{1}{{\cos 3\theta }}} \right) = 0 (5)
Solving equation 4, we get:
3θ=nπ3\theta = n\pi
θ=nπ3\Rightarrow \theta = \dfrac{{n\pi }}{3} (6)
Solving the equation 5, we get:
2(cos(θ)+cos3θ)=1cos3θ\dfrac{2}{{\left( {\cos (\theta ) + \cos 3\theta } \right)}} = \dfrac{1}{{\cos 3\theta }}
2cos3θ=cosθ+cos3θ\Rightarrow 2\cos 3\theta = \cos \theta + \cos 3\theta
cos3θ=cosθ\Rightarrow \cos 3\theta = \cos \theta
cos3θcosθ=0\Rightarrow \cos 3\theta - \cos \theta = 0
Using the difference to product identity of cosine function
cosAcosB=2sin(A+B2)sin(AB2)\cos A - \cos B = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{A - B}}{2}} \right) , we get:
2sin2θsinθ=02\sin 2\theta \sin \theta = 0
sin2θ=0\therefore \sin 2\theta = 0 (7)
Also
sinθ=0\sin \theta = 0 (8)
Solving equation 7, we get:
2θ=nπ2\theta = n\pi
θ=nπ2\Rightarrow \theta = \dfrac{{n\pi }}{2} (9)
We know that tangent function is not defined at θ=nπ2\theta = \dfrac{{n\pi }}{2}
So, the solution given by equation 9 is not the solution for the given question.
Now, solving equation 8, we get
θ=nπ\theta = n\pi (10)
Therefore, the solution for given equation are given by:
θ=nπ3\theta = \dfrac{{n\pi }}{3} and θ=nπ\theta = n\pi .

Note: In this type question, you can simplify the given equation by converting it into tangent function only and then use the trigonometric identity of tan(A+B)=tanA+tanB1tanAtanB\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}} to further simplify it and get the equation in product form as tanθtan2θ(tanθ+tan2θ)=0\tan \theta \tan 2\theta (\tan \theta + \tan 2\theta ) = 0 and then finally find the solution by equating each term to zero. You should never forget to recheck the solution.