Solveeit Logo

Question

Question: Find the solubility of \({\text{Ca}}{\left( {{\text{I}}{{\text{O}}_{\text{3}}}} \right)_{\text{2}}}\...

Find the solubility of Ca(IO3)2{\text{Ca}}{\left( {{\text{I}}{{\text{O}}_{\text{3}}}} \right)_{\text{2}}} (in mol/L) in a solution containing 0.1 M Ca(NO3)2{\text{Ca}}{\left( {{\text{N}}{{\text{O}}_{\text{3}}}} \right)_{\text{2}}}, at 18C{18^ \circ }{\text{C}} is, [Ksp{{\text{K}}_{{\text{sp}}}} Ca(IO3)2{\text{Ca}}{\left( {{\text{I}}{{\text{O}}_{\text{3}}}} \right)_{\text{2}}} = 6.3×1076.3 \times {10^{ - 7}}, at 18C{18^ \circ }{\text{C}}]

Explanation

Solution

Solubility of a compound is defined as, the ability of the compound to get dissolved in a solvent and convert into its constituent ions. When a solid is in chemical equilibrium with its solution, the equilibrium is called the solubility equilibrium and Ksp{{\text{K}}_{{\text{sp}}}} is the solubility product constant of that equilibrium.

Complete step by step solution: Let’s write the balanced chemical reaction for the given question,
Ca(IO3)2(s)Ca2 + (aq) + 2IO3 - (aq){\text{Ca}}{\left( {{\text{I}}{{\text{O}}_{\text{3}}}} \right)_{\text{2}}}{\text{(s)}} \rightleftharpoons {\text{C}}{{\text{a}}^{{\text{2 + }}}}{\text{(aq) + 2IO}}_{\text{3}}^{\text{ - }}{\text{(aq)}}
Now, consider ‘x’ to be the solubility of Ca(IO3)2{\text{Ca}}{\left( {{\text{I}}{{\text{O}}_{\text{3}}}} \right)_{\text{2}}} , then we can write the solubility at equilibrium as
Ca(IO3)2(s)Ca2 + (aq) + 2IO3 - (aq) Eq x 0.1 2x  {\text{Ca}}{\left( {{\text{I}}{{\text{O}}_{\text{3}}}} \right)_{\text{2}}}{\text{(s)}} \rightleftharpoons {\text{C}}{{\text{a}}^{{\text{2 + }}}}{\text{(aq) + 2IO}}_{\text{3}}^{\text{ - }}{\text{(aq)}} \\\ {{\text{E}}_q}{\text{ x 0}}{\text{.1 2x}} \\\ (where Eq{{\text{E}}_q} = equilibrium and 0.1M of Ca2 + {\text{C}}{{\text{a}}^{{\text{2 + }}}} is given in the question.)
From the balanced chemical equation, we can say that 1 mole Ca(IO3)2{\text{Ca}}{\left( {{\text{I}}{{\text{O}}_{\text{3}}}} \right)_{\text{2}}} gives, 1 mole Ca2 + {\text{C}}{{\text{a}}^{{\text{2 + }}}}, and 2 moles of IO3 - {\text{IO}}_{\text{3}}^{\text{ - }} ( 1 and 2 moles of
Ca2 + {\text{C}}{{\text{a}}^{{\text{2 + }}}} and IO3 - {\text{IO}}_{\text{3}}^{\text{ - }} respectively, can also be called as the stoichiometric coefficient). Hence, we can write the solubility product constant as;
Ksp=[Ca2 + ]1[IO3]2\Rightarrow {{\text{K}}_{{\text{sp}}}} = {\left[ {{\text{C}}{{\text{a}}^{{\text{2 + }}}}} \right]^1}{\left[ {{\text{I}}{{\text{O}}_3}} \right]^2}
\Rightarrow 6.3×1076.3 \times {10^{ - 7}} = 0.1 ×\times (x)2{\left( {\text{x}} \right)^2}(the stoichiometric coefficients are raised to the power in the Ksp{{\text{K}}_{{\text{sp}}}}equation)
\Rightarrow 6.3×1076.3 \times {10^{ - 7}} - 0.1 = x2{{\text{x}}^2}
\Rightarrow x2{{\text{x}}^2}= 6.2×1076.2 \times {10^{ - 7}} ( now we will square root on both sides, to get the value of ‘x’)

\Rightarrow x2\sqrt {{{\text{x}}^2}} = 6.2×107\sqrt {6.2 \times {{10}^{ - 7}}} (the value of x2\sqrt {{{\text{x}}^2}} = x )
\Rightarrowx = 0.000787 (since the first non zero number ‘7’ is after 3 zeros, we will multiply and divide the equation with 1000, to get the answer in 3 decimals points)
\Rightarrow x = 0.000787×100010000.000787 \times \dfrac{{1000}}{{1000}}
\Rightarrow x = 0.787103\dfrac{{0.787}}{{{{10}^3}}}
\Rightarrowx = 0.787×1030.787 \times {10^{ - 3}}m/L
Hence, the solubility of Ca(IO3)2{\text{Ca}}{\left( {{\text{I}}{{\text{O}}_{\text{3}}}} \right)_{\text{2}}} in the solution containing 0.1 M Ca(NO3)2{\text{Ca}}{\left( {{\text{N}}{{\text{O}}_{\text{3}}}} \right)_{\text{2}}}, at 18C{18^ \circ }{\text{C}} is 0.787×1030.787 \times {10^{ - 3}}mol/L

Note: While calculating the solubility constant, remember that the concentration of solids and liquids are considered as unity (1). Also, pay attention to the S.I units, the question specifies to get the solubility in mol/L, the number of moles of solute dissolved in per liter of solution is also called molarity and the S.I unit is M.