Solveeit Logo

Question

Question: Find the slope of the tangent to the curve \(x=a{{t}^{2}}\) and \(y=2at\) at t=1....

Find the slope of the tangent to the curve x=at2x=a{{t}^{2}} and y=2aty=2at at t=1.

Explanation

Solution

We solve this problem by first discussing the property that is slope of tangent at point (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) on the curve y=f(x)y=f\left( x \right) is equal to dydx](x1,y1){{\left. \dfrac{dy}{dx} \right]}_{\left( {{x}_{1}},{{y}_{1}} \right)}}. Then we find the values of dydt\dfrac{dy}{dt} and dxdt\dfrac{dx}{dt} by differentiating y=2aty=2at and x=at2x=a{{t}^{2}} with respective to t using the formula, ddx(xn)=nxn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}. Then we substitute this values in dydx=dydtdxdt\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}} and then substitute the value t=1t=1 in it to find the slope of the required tangent.

Complete step-by-step solution:
The curve we are given is x=at2x=a{{t}^{2}} and y=2aty=2at.
We need to find the slope of the tangent to this curve at t=1.
Here the equation of the curve is given in the parametric form.
Now let us remember the property that,
The slope of any curve y given by y=f(x)y=f\left( x \right) at any point (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) is equal to the value of dydx\dfrac{dy}{dx} at that point, that is slope of tangent at (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right) on the curve is equal to dydx](x1,y1){{\left. \dfrac{dy}{dx} \right]}_{\left( {{x}_{1}},{{y}_{1}} \right)}}.

Here the curve we are given is x=at2x=a{{t}^{2}} and y=2aty=2at.
We need to find the slope of the tangent to this curve at point t=1. From the above-discussed property,
Slope of the tangent = dydx]t=1{{\left. \dfrac{dy}{dx} \right]}_{t=1}}
So first, let us find the value of dydx\dfrac{dy}{dx} for the given curve.
We can write dydx\dfrac{dy}{dx} as,
dydx=dydtdxdt............(1)\Rightarrow \dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}............\left( 1 \right)
Now let us consider y=2aty=2at.
Let us differentiate it with respect to t.
Let us consider the formula for differentiation,
ddx(xn)=nxn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}
Using this formula, we get,
dydt=2a.........(2)\Rightarrow \dfrac{dy}{dt}=2a.........\left( 2 \right)
Now let us consider x=at2x=a{{t}^{2}}.
Let us differentiate it with respect to t.
Let us consider the formula for differentiation,
ddx(xn)=nxn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}
Using this formula, we get,
dxdt=a(2t) dxdt=2at.........(3) \begin{aligned} & \Rightarrow \dfrac{dx}{dt}=a\left( 2t \right) \\\ & \Rightarrow \dfrac{dx}{dt}=2at.........\left( 3 \right) \\\ \end{aligned}
Substituting the values in equations (2) and (3) in equation (1) we get,
dydx=dydtdxdt dydx=2a2at dydx=1t \begin{aligned} & \Rightarrow \dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}} \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{2a}{2at} \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{1}{t} \\\ \end{aligned}
As we need to find the value of dydx]t=1{{\left. \dfrac{dy}{dx} \right]}_{t=1}} let us substitute the value t=1 in the above obtained value of dydx\dfrac{dy}{dx}. Then we get,
dydx]t=1=1t]t=1 dydx]t=1=1 \begin{aligned} & \Rightarrow {{\left. \dfrac{dy}{dx} \right]}_{t=1}}={{\left. \dfrac{1}{t} \right]}_{t=1}} \\\ & \Rightarrow {{\left. \dfrac{dy}{dx} \right]}_{t=1}}=1 \\\ \end{aligned}
So, we get that slope of the tangent to given curve at t=1 is equal to 1.
Hence answer is 1.

Note: We can also solve this question in another process.
We need to find the slope of the tangent to the curve x=at2x=a{{t}^{2}} and y=2aty=2at at point t=1.
Now let us find the equation of curve
x=at2 t2=xa \begin{aligned} & \Rightarrow x=a{{t}^{2}} \\\ & \Rightarrow {{t}^{2}}=\dfrac{x}{a} \\\ \end{aligned}
y=2at t=y2a \begin{aligned} & \Rightarrow y=2at \\\ & \Rightarrow t=\dfrac{y}{2a} \\\ \end{aligned}
Using these two values we get,
(y2a)2=xa y24a2=xa y2=4ax \begin{aligned} & \Rightarrow {{\left( \dfrac{y}{2a} \right)}^{2}}=\dfrac{x}{a} \\\ & \Rightarrow \dfrac{{{y}^{2}}}{4{{a}^{2}}}=\dfrac{x}{a} \\\ & \Rightarrow {{y}^{2}}=4ax \\\ \end{aligned}
At, t=1
x=at2=a(1)2=a y=2at=2a(1)=2a \begin{aligned} & \Rightarrow x=a{{t}^{2}}=a{{\left( 1 \right)}^{2}}=a \\\ & \Rightarrow y=2at=2a\left( 1 \right)=2a \\\ \end{aligned}
So, we need to find the slope of tangent at the point (a,2a)\left( a,2a \right).
First let us find the value of dydx\dfrac{dy}{dx}.
Now let us consider the curve y2=4ax{{y}^{2}}=4ax.
Now let us differentiate with respective to x. Then we get,
Let us consider the formula for differentiation,
ddx(xn)=nxn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}
Using this formula, we get,
2ydydx=4a dydx=2ay \begin{aligned} & \Rightarrow 2y\dfrac{dy}{dx}=4a \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{2a}{y} \\\ \end{aligned}
Now let us find the value of dydx](a,2a){{\left. \dfrac{dy}{dx} \right]}_{\left( a,2a \right)}}.
dydx](a,2a)=2a2a=1\Rightarrow {{\left. \dfrac{dy}{dx} \right]}_{\left( a,2a \right)}}=\dfrac{2a}{2a}=1
So, we get the slope of a tangent as 1.
Hence answer is 1.