Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

Find the slope of the normal to the curve x = acos3 θ, y = asin3 θ at θ=π/4.

Answer

It is given that x = acos3 θ and y = asin3 θ.

dxdθ\frac{dx}{dθ}=3a cos2θ(-sinθ)=-3a cos2θ sinθ

dydθ\frac{dy}{dθ}=3a sin2θ(cosθ)

dydx\frac{dy}{dx}=(dydθ)(dxdθ) \frac{(\frac{dy}{dθ}) }{ (\frac{dx}{dθ}) }=3asin2θcosθ3acos2θsinθ\frac{3asin^2θ\,cosθ}{-3acos^2θ\,sinθ}= sinθcosθ\frac{-sinθ}{cosθ}=-tanθ

Therefore, the slope of the tangent at θ=π4θ=\frac{π}{4} is given by,

(dydx)]θ=π4(\frac{dy}{dx}) \bigg]_{θ=\frac{π}{4}}=tanθ]θ=π4-tanθ\bigg]_{θ=\frac{π}{4}}=-tanπ4\frac{ π}{4}=-1

Hence, the slope of the normal at θ=π4θ=\frac{π}{4} is given by,

1slop of the tangent atθ=π4=(11)=1\frac{1}{\text{slop of the tangent at} \,θ=\frac{π}{4}}= (\frac{-1}{-1}) =1