Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

Find the slope of the normal to the curve x=1asinθ,y=bcos2θx = 1 − a\, sin θ,\, y = b\, cos^2 θ at θ=π2\frac{π}{2}.

Answer

It is given that x =1−a sin θ and y = b cos2 θ.

dxdθ\frac{dx}{dθ}=-acosθ and dydθ\frac{dy}{dθ}=2b cosθ(-sinθ)=-2bsinθcosθ

dydx\frac{dy}{dx}=((dydθ)(dxdθ)\frac{(\frac{dy}{dθ}) }{ (\frac{dx}{dθ}) }=2bsinθcosθacosθ\frac{-2b\, sinθ\,cosθ}{-a\, cosθ}=2bb\frac {2b}{b} sinθ

Therefore, the slope of the tangent at θ=π2θ=\frac{π}{2} is given by,

(dydx)]θ=π2(\frac{dy}{dx}) \bigg]_{θ=\frac{π}{2}}=(2bb)sinθ]θ=π2(\frac {2b}{b}) sinθ\bigg]_{θ=\frac{π}{2}}= 2bb\frac {2b}{b} sin π2\frac{π}{2}=2bb\frac {2b}{b}

Hence, the slope of the normal at θ=π2θ=\frac{π}{2} is given by,

1slope of the tangent atθ=π4\frac{1}{\text{slope of the tangent at} θ=\frac{π}{4}}=-12bb\frac1{\frac {2b}{b} }=a2b\frac {a}{2b}