Solveeit Logo

Question

Question: Find the simplest form of \[{\tan ^{ - 1}}\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} ...

Find the simplest form of tan13cosx4sinx4cosx+3sinx{\tan ^{ - 1}}\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right|, if it is given that 34tanx>1\dfrac{3}{4}\tan x > - 1.

Explanation

Solution

We need to convert the expression given inside tan1{\tan ^{ - 1}}\left| {} \right| in the form of tangents of an angle (say θ\theta ). Such a conversion leads to the form of tan1(tan(θ)){\tan ^{ - 1}}\left( {\tan \left( \theta \right)} \right). Simplify further to get the required result.

Complete step-by-step answer:
We can convert the expression in tan1(tan(θ)){\tan ^{ - 1}}\left( {\tan \left( \theta \right)} \right) form if we can express 3cosx4sinx4cosx+3sinx\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right| in the form of tan(a+b)\tan \left( {a + b} \right) or tan(ab)\tan \left( {a - b} \right).
We know that tan(a+b)=tana+tanb1tanatanb\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}.
Also, we know that tan(ab)=tanatanb1+tanatanb\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}} .
There is difference of two terms in the numerator and sum of two terms in the denominator of 3cosx4sinx4cosx+3sinx\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right|.
It is similar to tanatanb1+tanatanb\dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}.
Hence, let us try to express 3cosx4sinx4cosx+3sinx\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right| as tan(ab)\tan \left( {a - b} \right) where, ab=θa - b = \theta .
We need to express the denominator in the form of 1+tanatanb1 + \tan a\tan b.
First, let us divide both the numerator and the denominator by 4cosx4\cos x.
Also, we know that tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}.
Hence, substitute tanx\tan x for sinxcosx\dfrac{{\sin x}}{{\cos x}} in the calculation.
tan13cosx4sinx4cosx4cosx+3sinx4cosx=tan13cosx4cosx4sinx4cosx4cosx4cosx+3sinx4cosx =tan134tanx1+34tanx\begin{array}{c}{\tan ^{ - 1}}\left| {\dfrac{{\dfrac{{3\cos x - 4\sin x}}{{4\cos x}}}}{{\dfrac{{4\cos x + 3\sin x}}{{4\cos x}}}}} \right| = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{{3\cos x}}{{4\cos x}} - \dfrac{{4\sin x}}{{4\cos x}}}}{{\dfrac{{4\cos x}}{{4\cos x}} + \dfrac{{3\sin x}}{{4\cos x}}}}} \right|\\\ = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - \tan x}}{{1 + \dfrac{3}{4}\tan x}}} \right|\end{array}
Let us assume that tanϕ=34\tan \phi = \dfrac{3}{4}.
We also know that tan1(tanθ)=θ{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta .
As we have to express the dfraction in the form tanatanb1+tanatanb\dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}, let us substitute tanϕ\tan \phi for 34\dfrac{3}{4} and use the property tan1(tanθ)=θ{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta to simplify the expression.
tanϕ=34tan1(tanϕ)=tan1(34)ϕ=tan1(34)\begin{array}{c}\tan \phi = \dfrac{3}{4}\\\\{\tan ^{ - 1}}\left( {\tan \phi } \right) = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right)\\\\\phi = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right)\end{array}
From the above simplification, we get ϕ=tan1(34)\phi = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right).
After substitution, we get the following expression.
tan1tanϕtanx1+tanϕtanx=tan1(tan(ϕx)) =ϕx\begin{array}{c}{\tan ^{ - 1}}\left| {\dfrac{{\tan \phi - \tan x}}{{1 + \tan \phi \tan x}}} \right| = {\tan ^{ - 1}}\left( {\tan \left( {\phi - x} \right)} \right)\\\ = \phi - x\end{array}
Hence, we get θ=ϕx\theta = \phi - x.
Now, we will back substitute tan1(34){\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) for ϕ\phi and we will get the simplified form of the given expression.
tan13cosx4sinx4cosx+3sinx=tan1(34)x{\tan ^{ - 1}}\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right| = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) - x

Hence, the simplest form of tan13cosx4sinx4cosx+3sinx{\tan ^{ - 1}}\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right| is tan1(34)x{\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) - x.

Note: We can also solve the question in a different way. We will repeat the first step.
Let us divide both the numerator and the denominator by 4cosx4\cos x.
Also, we know that tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}.
Hence, substitute tanx\tan x for sinxcosx\dfrac{{\sin x}}{{\cos x}} in the calculation.
tan13cosx4sinx4cosx4cosx+3sinx4cosx=tan13cosx4cosx4sinx4cosx4cosx4cosx+3sinx4cosx =tan134tanx1+34tanx\begin{array}{c}{\tan ^{ - 1}}\left| {\dfrac{{\dfrac{{3\cos x - 4\sin x}}{{4\cos x}}}}{{\dfrac{{4\cos x + 3\sin x}}{{4\cos x}}}}} \right| = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{{3\cos x}}{{4\cos x}} - \dfrac{{4\sin x}}{{4\cos x}}}}{{\dfrac{{4\cos x}}{{4\cos x}} + \dfrac{{3\sin x}}{{4\cos x}}}}} \right|\\\ = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - \tan x}}{{1 + \dfrac{3}{4}\tan x}}} \right|\end{array}

After that we get, tan13cosx4sinx4cosx+3sinx=tan134tanx1+34tanx{\tan ^{ - 1}}\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right| = {\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - \tan x}}{{1 + \dfrac{3}{4}\tan x}}} \right|.
We will use the formula tan1(ab1+ab)=tan1atan1b{\tan ^{ - 1}}\left( {\dfrac{{a - b}}{{1 + ab}}} \right) = {\tan ^{ - 1}}a - {\tan ^{ - 1}}b to further simplify the expression.
Let us assume that 34=a\dfrac{3}{4} = a and tanx=b\tan x = b.
Let us substitute 34\dfrac{3}{4} for aa and tanx\tan x for bb in the formula.
We will get, tan134tanx1+34tanx=tan1(34)tan1(tanx){\tan ^{ - 1}}\left| {\dfrac{{\dfrac{3}{4} - \tan x}}{{1 + \dfrac{3}{4}\tan x}}} \right| = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) - {\tan ^{ - 1}}\left( {\tan x} \right).
As we know that tan1(tanθ)=θ{\tan ^{ - 1}}\left( {\tan \theta } \right) = \theta , let us substitute xx for tan1(tanx){\tan ^{ - 1}}\left( {\tan x} \right).
Hence, we get tan13cosx4sinx4cosx+3sinx=tan1(34)x{\tan ^{ - 1}}\left| {\dfrac{{3\cos x - 4\sin x}}{{4\cos x + 3\sin x}}} \right| = {\tan ^{ - 1}}\left( {\dfrac{3}{4}} \right) - x.