Solveeit Logo

Question

Question: Find the shortest distance of the point (0,c) from the parabola \[y={{x}^{2}}\] where \[0\le c\le 5\...

Find the shortest distance of the point (0,c) from the parabola y=x2y={{x}^{2}} where 0c50\le c\le 5.
(a) 4c12\sqrt{\dfrac{4c-1}{2}}
(b) 4c24\sqrt{\dfrac{4c-2}{4}}
(c) 4c33\sqrt{\dfrac{4c-3}{3}}
(d) 4c14\sqrt{\dfrac{4c-1}{4}}

Explanation

Solution

Draw the graph for the parabola y=x2y={{x}^{2}} with vertex at (0,0) and draw a normal from P (0,c) to the parabola. This normal will be the shortest distance between the point and the parabola. The best approach is using calculus we can find the slope of Normal.

Complete step-by-step solution:
The parabola y=x2y={{x}^{2}} is drawn below along with normal from P (0, c) to the parabola.

Let the normal intersect the parabola at Q(α,α2)Q\left( \alpha ,{{\alpha }^{2}} \right). Hence, PQ will the shortest distance from point P to the parabola. We have to find the distance between point P and Q.
Finding the slope of normal drawn, we get,
y=x2y={{x}^{2}}
Differentiating both sides with respect to x, we get,
dydx=2x\Rightarrow \dfrac{dy}{dx}=2x
Now, at dydx\dfrac{dy}{dx} at Q will give the slope of tangent,
dydxat Q=2α\Rightarrow {{\left. \dfrac{dy}{dx} \right|}_{at\text{ }Q}}=2\alpha
Since the tangent and normal are perpendicular to each other, i.e., m1m2=1{{m}_{1}}{{m}_{2}}=-1, hence, the slope of normal will be given by
m1m2=1{{m}_{1}}{{m}_{2}}=-1
2αm1=1\Rightarrow 2\alpha {{m}_{1}}=-1
m1=12α\Rightarrow {{m}_{1}}=\dfrac{-1}{2\alpha }
Slope of Normal, m=12α...............(i)m=-\dfrac{1}{2\alpha }...............(i)
Also, since we have coordinates of two points P and Q, so using the formula of two – point form to find the slope of normal.
The two – point form is given by the equation m=y2y1x2x1................(ii)m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}................(ii)
From the given coordinates P (0, c) and Q(α,α2)Q\left( \alpha ,{{\alpha }^{2}} \right), we have,
x1=0,y1=c{{x}_{1}}=0,{{y}_{1}}=c
x2=α,y2=α2{{x}_{2}}=\alpha ,{{y}_{2}}={{\alpha }^{2}}
Now, replacing the values of x1,y1,x2,y2{{x}_{1}},{{y}_{1}},{{x}_{2}},{{y}_{2}} in equation (i), we get,
m=α2cα0..............(iii)m=\dfrac{{{\alpha }^{2}}-c}{\alpha -0}..............(iii)
From equation (i) and (iii), we get,
12α=α2cα0-\dfrac{1}{2\alpha }=\dfrac{{{\alpha }^{2}}-c}{\alpha -0}
12α=α2cα\Rightarrow -\dfrac{1}{2\alpha }=\dfrac{{{\alpha }^{2}}-c}{\alpha }
12=α2c\Rightarrow -\dfrac{1}{2}={{\alpha }^{2}}-c
α2c=12\Rightarrow {{\alpha }^{2}}-c=-\dfrac{1}{2}
α2=c12\Rightarrow {{\alpha }^{2}}=c-\dfrac{1}{2}
α=±c12\Rightarrow \alpha =\pm \sqrt{c-\dfrac{1}{2}}
Thus, the coordinates of point Q is (±c12,c12)\left( \pm \sqrt{c-\dfrac{1}{2}},c-\dfrac{1}{2} \right).
We know, the distance between the two points is given by the formula:
d=(x2x1)2+(y2y1)2...............(iv)d=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}...............(iv)
Using the formula (iv) to find the distance between the point PQ, we get,
x1=0,y1=c{{x}_{1}}=0,{{y}_{1}}=c
x2=±c12,y2=c12{{x}_{2}}=\pm \sqrt{c-\dfrac{1}{2}},{{y}_{2}}=c-\dfrac{1}{2}
Now, replacing the values of x1,y1,x2,y2{{x}_{1}},{{y}_{1}},{{x}_{2}},{{y}_{2}} in equation (iv), we get,
PQ=(0c12)2+(c12c)2PQ=\sqrt{{{\left( 0\mp \sqrt{c-\dfrac{1}{2}} \right)}^{2}}+{{\left( c-\dfrac{1}{2}-c \right)}^{2}}}
PQ=(c12)2+(cc12)2\Rightarrow PQ=\sqrt{{{\left( \mp \sqrt{c-\dfrac{1}{2}} \right)}^{2}}+{{\left( c-c-\dfrac{1}{2} \right)}^{2}}}
PQ=(c12)+(12)2\Rightarrow PQ=\sqrt{\left( c-\dfrac{1}{2} \right)+{{\left( -\dfrac{1}{2} \right)}^{2}}}
PQ=c12+14\Rightarrow PQ=\sqrt{c-\dfrac{1}{2}+\dfrac{1}{4}}
PQ=c14\Rightarrow PQ=\sqrt{c-\dfrac{1}{4}}
PQ=4c14\therefore PQ=\sqrt{\dfrac{4c-1}{4}}

Note: The best approach to solve this question is to make use of calculus. In order to find the shortest distance from a point to any geometric figure is to draw a normal from the point to the figure. Students must take care of the difference between the tangent and normal. There is a relation between the slopes of a tangent and normal, i.e., m1m2=1{{m}_{1}}{{m}_{2}}=-1.