Question
Mathematics Question on Three Dimensional Geometry
Find the shortest distance between the lines whose vector equations are
r=(1−t)i^+(t−2)j^+(3−2t)k^ and
r=(s+1)i^+(2s−1)j^−(2s+1)k^
The given lines are
r=(1−t)i^+(t−2)j^+(3−2t)k^
⇒r=(i^−2j^+3k^)+t(−i^+j^−2k^)...(1)
r=(s+1)i^+(2s−1)j^−(2s+1)k^
⇒r=(i^−j^+k^)+s(i^+2j^−2k^)...(2)
It is known that the shortest distance between the lines,
r=a1+λb1 and r=a2+μb2, is given by,
d=|(b1→×b2→).(a2→-a2→)/|b1→×b2→||...(3)
For the given equations,
a1=i^−2j^+3k^
b1=−i^+j^−2k^
a2=i^−j^−k^
b2=i^+2j^−2k^
a2−a1
=(i^−j^−k^)-(i^−2j^+3k^)=j^−4k^
b1.b2 = i^−1\1j^12k^−2−2
=(−2+4)i^−(2+2)j^+(−2−1)k^
=2i^−4j^−3k^
⇒∣b1∗b2∣
=(2)2+(−4)2+(−3)2
=4+16+9
=29
∴(b1∗b2).(a2−a1)
=(2i^−4j^−3k^).(j^−4k^^)
=-4+12
=8
Substituting all the values in equation (3), we obtain
d=|298|
=298
Therefore, the shortest distance between the lines is 298 units.