Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Find the shortest distance between the lines whose vector equations are

r=(1t)i^+(t2)j^+(32t)k^\overrightarrow r=(1-t)\hat i+(t-2)\hat j+(3-2t)\hat k and

r=(s+1)i^+(2s1)j^(2s+1)k^\overrightarrow r=(s+1)\hat i+(2s-1)\hat j-(2s+1)\hat k

Answer

The given lines are

r=(1t)i^+(t2)j^+(32t)k^\overrightarrow r=(1-t)\hat i+(t-2)\hat j+(3-2t)\hat k
r=(i^2j^+3k^)+t(i^+j^2k^)\Rightarrow\overrightarrow r=(\hat i-2\hat j+3\hat k)+t(-\hat i+\hat j-2\hat k)...(1)

r=(s+1)i^+(2s1)j^(2s+1)k^\overrightarrow r=(s+1)\hat i+(2s-1)\hat j-(2s+1)\hat k
r=(i^j^+k^)+s(i^+2j^2k^)\Rightarrow\overrightarrow r=(\hat i-\hat j+\hat k)+s(\hat i+2\hat j-2\hat k)...(2)

It is known that the shortest distance between the lines,
r=a1+λb1\overrightarrow r=\overrightarrow a_1+\lambda \overrightarrow b_1 and r=a2+μb2\overrightarrow r=\overrightarrow a_2+\mu \overrightarrow b_2, is given by,
d=|(b1→×b2→).(a2→-a2→)/|b1→×b2→||...(3)

For the given equations,
a1=i^2j^+3k^\overrightarrow a_1= \hat i-2\hat j+3\hat k
b1=i^+j^2k^\overrightarrow b_1= -\hat i+\hat j-2\hat k
a2=i^j^k^\overrightarrow a_2= \hat i-\hat j-\hat k
b2=i^+2j^2k^\overrightarrow b_2= \hat i+2\hat j-2\hat k

a2a1\overrightarrow a_2-\overrightarrow a_1
=(i^j^k^)(\hat i-\hat j-\hat k)-(i^2j^+3k^)(\hat i-2\hat j+3\hat k)=j^4k^\hat j-4\hat k

b1.b2\overrightarrow b_1.\overrightarrow b_2 = i^j^k^112\122\begin{vmatrix}\hat i&\hat j&\hat k\\\\-1&1&-2\\\1&2&-2\end{vmatrix}

=(2+4)i^(2+2)j^+(21)k^(-2+4)\hat i-(2+2)\hat j+(-2-1)\hat k
=2i^4j^3k^2\hat i-4\hat j-3\hat k

b1b2\Rightarrow \mid \overrightarrow b_1*\overrightarrow b_2\mid
=(2)2+(4)2+(3)2\sqrt{(2)^2+(-4)^2+(-3)^2}
=4+16+9\sqrt{4+16+9}
=29\sqrt{29}

∴(b1b2 \overrightarrow b_1*\overrightarrow b_2).(a2a1\overrightarrow a_2-\overrightarrow a_1)
=(2i^4j^3k^2\hat i-4\hat j-3\hat k).(j^4k^\hat j-4\hat k^)
=-4+12
=8

Substituting all the values in equation (3), we obtain
d=|829\frac{8}{\sqrt{29}}|
=829\frac{8}{\sqrt{29}}

Therefore, the shortest distance between the lines is 829\frac{8}{\sqrt{29}} units.