Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Find the shortest distance between the lines whose vector equations are

r=(i^+2j^+3k^)+λ(i^3j^+2k^)\overrightarrow r=(\hat i+2\hat j+3\hat k)+\lambda(\hat i-3\hat j+2\hat k)

and r=(4i^+5j^+6k^)+μ(2i^+3j^+k^)\overrightarrow r=(4\hat i+5\hat j+6\hat k)+\mu(2\hat i+3\hat j+\hat k)

Answer

The given lines are r=(i^+2j^+3k^)+λ(i^3j^+2k^)\overrightarrow r=(\hat i+2\hat j+3\hat k)+\lambda(\hat i-3\hat j+2\hat k)and r=(4i^+5j^+6k^)+μ(2i^+3j^+k^)\overrightarrow r=(4\hat i+5\hat j+6\hat k)+\mu(2\hat i+3\hat j+\hat k)

It is known that the shortest distance between the lines, r=a1+λb1\overrightarrow r=\overrightarrow a_1+\lambda b_1 and r=a2+μb2\overrightarrow r=\overrightarrow a_2+\mu b_2, is given by,
d=|(b1×b2).(a2-a2)/|b1×b2||...(1)

Comparing the given equations with r=a1+λb1\overrightarrow r=\overrightarrow a_1+\lambda b_1 and r=a2+μb2\overrightarrow r=\overrightarrow a_2+\mu b_2, we obtain

a1=i^+2j^+3k^a_1=\hat i+2\hat j+3\hat k
b1=i^3j^+2k^b_1=\hat i-3\hat j+2\hat k
a2=4i^+5j^+6k^a_2=4\hat i+5\hat j+6\hat k
b2=2i^+3j^+k^b_2=2\hat i+3\hat j+\hat k

a2a1\overrightarrow a_2-\overrightarrow a_1

=(4i^+5j^+6k^)(4\hat i+5\hat j+6\hat k)-(i^+2j^+3k^)(\hat i+2\hat j+3\hat k)

=3i^+3j^+3k^3\hat i+3\hat j+3\hat k

b1b2\overrightarrow b_1*\overrightarrow b_2

=i^j^k^\132\231\begin{vmatrix}\hat i&\hat j&\hat k\\\1&-3&2\\\2&3&1\end{vmatrix}

=(-3-6)i^\hat i-(1-4)j^\hat j+(3+6)k^\hat k

=-9i^\hat i+3j^\hat j+9k^\hat k

b1b2\Rightarrow \mid \overrightarrow b_1*\overrightarrow b_2\mid
=(9)2+(3)2+(9)2\sqrt{(-9)^2+(3)^2+(9)^2}
=81+9+81\sqrt{81+9+81}
=171\sqrt{171}
=3193\sqrt{19}

(b1b2)(\overrightarrow b_1*\overrightarrow b_2).(a2a1)(\overrightarrow a_2-\overrightarrow a_1)
=(-9i^\hat i+3j^\hat j+9k^\hat k).(3i^\hat i+3j^\hat j+3k^\hat k)
=-9×3+3×3+9×3
=9

Substituting all the values in equation (1), we obtain
d=|9319\frac{9}{3\sqrt{19}}|
=319\frac{3}{\sqrt {19}}

Therefore, the shortest distance between the two given lines is 319\frac{3}{\sqrt {19}} units.