Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Find the shortest distance between the lines
r=(i^+2j^+k^)+λ(i^j^+k^)\overrightarrow r=(\hat i+2\hat j+\hat k)+\lambda(\hat i-\hat j+\hat k) and
r=2i^j^k^+μ(2i^+2j^+2k^)\overrightarrow r=2\hat i-\hat j-\hat k+\mu\,(2\hat i+2\hat j+2\hat k)

Answer

The equations of the given lines are
r=(i^+2j^+k^)+λ(i^j^+k^)\overrightarrow r=(\hat i+2\hat j+\hat k)+\lambda(\hat i-\hat j+\hat k)
r=2i^j^k^+μ(2i^+2j^+2k^)\overrightarrow r=2\hat i-\hat j-\hat k+\mu\,(2\hat i+2\hat j+2\hat k)

It is known that the shortest distance between the lines,

r=a1+λb1\overrightarrow r= \overrightarrow a_1+\lambda\overrightarrow b_1and r=a2+μb2\overrightarrow r=\overrightarrow a_2+\mu\overrightarrow b_2 is given by,
d=|(b1→×b2→).(a2→-a2→)/b1→×b2→|....(1)

Comparing the given equations, we obtain
a1\overrightarrow a_1=i^+2j^+k^\hat i+2\hat j+\hat k
b1\overrightarrow b_1=i^j^+k^\hat i-\hat j+\hat k

a2\overrightarrow a_2=2i^j^k^2\hat i-\hat j-\hat k
b2\overrightarrow b_2=2i^+j^+2k^2\hat i+\hat j+2\hat k

a2\overrightarrow a_2-a1\overrightarrow a_1=(2i^j^k^2\hat i-\hat j-\hat k)-(i^+2j^+k^\hat i+2\hat j+\hat k)=i^3j^2k^\hat i-3\hat j-2\hat k

b1b2=i^j^k^\111\212\overrightarrow b_1*\overrightarrow b_2= \begin{vmatrix}\hat i&\hat j&\hat k\\\1&-1&1\\\2&1&2\end{vmatrix}

b1b2\overrightarrow b_1*\overrightarrow b_2=(21)i^(22)j^+(1+2)k^=3i^+3k^(-2-1)\hat i-(2-2)\hat j+(1+2)\hat k=3\hat i+3\hat k

\Rightarrow |b1b2\overrightarrow b_1*\overrightarrow b_2|

=(3)2+(3)2\sqrt{(-3)^2+(3)^2}
=9+9\sqrt{9+9}
=18\sqrt{18}
=32\sqrt2

Substituting all the values in equation(1), we obtain
d=(3i^+3k^).(i^3j^2k^)32\begin{vmatrix}\frac{(-3\hat i+3\hat k).(\hat i-3\hat j-2\hat k)}{3\sqrt2}\end{vmatrix}

d=(3.1+3(2))32\Rightarrow d=\begin{vmatrix}\frac{(-3.1+3(-2))}{3\sqrt2}\end{vmatrix}

d=932\Rightarrow d=\begin{vmatrix}\frac{-9}{3\sqrt2}\end{vmatrix}

d=32\Rightarrow d=\frac{3}{2}

=322\frac{3\sqrt2}{2}

Therefore, the shortest distance between the two lines is 322\frac{3\sqrt2}{2} units.