Question
Mathematics Question on Three Dimensional Geometry
Find the shortest distance between the lines
r=(i^+2j^+k^)+λ(i^−j^+k^) and
r=2i^−j^−k^+μ(2i^+2j^+2k^)
The equations of the given lines are
r=(i^+2j^+k^)+λ(i^−j^+k^)
r=2i^−j^−k^+μ(2i^+2j^+2k^)
It is known that the shortest distance between the lines,
r=a1+λb1and r=a2+μb2 is given by,
d=|(b1→×b2→).(a2→-a2→)/b1→×b2→|....(1)
Comparing the given equations, we obtain
a1=i^+2j^+k^
b1=i^−j^+k^
a2=2i^−j^−k^
b2=2i^+j^+2k^
a2-a1=(2i^−j^−k^)-(i^+2j^+k^)=i^−3j^−2k^
b1∗b2=i^\1\2j^−11k^12
b1∗b2=(−2−1)i^−(2−2)j^+(1+2)k^=3i^+3k^
⇒ |b1∗b2|
=(−3)2+(3)2
=9+9
=18
=32
Substituting all the values in equation(1), we obtain
d=32(−3i^+3k^).(i^−3j^−2k^)
⇒d=32(−3.1+3(−2))
⇒d=32−9
⇒d=23
=232
Therefore, the shortest distance between the two lines is 232 units.