Solveeit Logo

Question

Question: Find the shortest distance between lines \( \vec{r}=\hat{i}+2\hat{j}+3\hat{k}+\lambda \left( 2\hat{i...

Find the shortest distance between lines r=i^+2j^+3k^+λ(2i^+j^+4k^)\vec{r}=\hat{i}+2\hat{j}+3\hat{k}+\lambda \left( 2\hat{i}+\hat{j}+4\hat{k} \right) and r=2i^+4j^+5k^+μ(3i^+4j^+5k^)\vec{r}=2\hat{i}+4\hat{j}+5\hat{k}+\mu \left( 3\hat{i}+4\hat{j}+5\hat{k} \right) .
(a) 2
(b) 16\dfrac{1}{6}
(c) 16\dfrac{1}{\sqrt{6}}
(d) 6\sqrt{6}

Explanation

Solution

Hint : In order to solve this problem, we need to know the formula for the shortest distance. The formula for shortest distance of lines represented by r=a1+λb1\vec{r}={{\vec{a}}_{1}}+\lambda {{\vec{b}}_{1}} and r=a2+μb2\vec{r}={{\vec{a}}_{2}}+\mu {{\vec{b}}_{2}} is as follows,
Shortest distance = (b1×b2).(a2a1)b1×b2\left| \dfrac{\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right).\left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)}{\left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|} \right| .We can calculate the denominator by cross-product and solve the numerator by the dot product.

Complete step-by-step answer :
We need to find the shortest distance between two lines.
Let's compare the first equation r=i^+2j^+3k^+λ(2i^+j^+4k^)\vec{r}=\hat{i}+2\hat{j}+3\hat{k}+\lambda \left( 2\hat{i}+\hat{j}+4\hat{k} \right) to r=a1+λb1\vec{r}={{\vec{a}}_{1}}+\lambda {{\vec{b}}_{1}}
We get,
a1=i^+2j^+3k^{{\vec{a}}_{1}}=\hat{i}+2\hat{j}+3\hat{k}
bˉ1=2i^+j^+4k^{{\bar{b}}_{1}}=2\hat{i}+\hat{j}+4\hat{k}
Now comparing the second equation r=2i^+4j^+5k^+μ(3i^+4j^+5k^)\vec{r}=2\hat{i}+4\hat{j}+5\hat{k}+\mu \left( 3\hat{i}+4\hat{j}+5\hat{k} \right) with r=a2+μb2\vec{r}={{\vec{a}}_{2}}+\mu {{\vec{b}}_{2}} we get,
aˉ2=2i^+4j^+5k^{{\bar{a}}_{2}}=2\hat{i}+4\hat{j}+5\hat{k}
bˉ2=3i^+4j^+5k^{{\bar{b}}_{2}}=3\hat{i}+4\hat{j}+5\hat{k}
The formula for shortest distance of lines represented by r=a1+λb1\vec{r}={{\vec{a}}_{1}}+\lambda {{\vec{b}}_{1}} and r=a2+μb2\vec{r}={{\vec{a}}_{2}}+\mu {{\vec{b}}_{2}} is as follows,
Shortest distance = (b1×b2).(a2a1)b1×b2..............................(i)\left| \dfrac{\left( {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right).\left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)}{\left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|} \right|..............................(i)
Now we need to find the value of (a2a1)\left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right) ,
Substituting the values, we get,
(a2a1)=(2i^+4j^+5k^)(i^+2j^+3k^)\left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)=\left( 2\hat{i}+4\hat{j}+5\hat{k} \right)-\left( \hat{i}+2\hat{j}+3\hat{k} \right)
Solving we get,
(a2a1)=(21)i^+(42)j^+(53)k^ =i^+2j^+2k^..................................(ii)\begin{aligned} & \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right)=\left( 2-1 \right)\hat{i}+\left( 4-2 \right)\hat{j}+\left( 5-3 \right)\hat{k} \\\ & =\hat{i}+2\hat{j}+2\hat{k}..................................(ii) \end{aligned}
Now finding the value of b1×b2{{\vec{b}}_{1}}\times {{\vec{b}}_{2}} .
We need to find the cross product of the above vectors.

{\hat{i}} & {\hat{j}} & {\hat{k}} \\\ 2 & 1 & 4 \\\ 3 & 4 & 5 \\\ \end{matrix} \right|$$ Where along the second row we have the components of $ {{\vec{b}}_{1}} $ and along the third row we have the components of $ {{\vec{b}}_{2}} $ . Solving this we get, $ \begin{aligned} & {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}}=\left( 5-16 \right)\hat{i}-\left( 10-12 \right)\hat{j}+\left( 8-3 \right)\hat{k} \\\ & =-11\hat{i}+2\hat{j}+5\hat{k}.................................(iii) \end{aligned} $ We also need to find the magnitude of $ {{\vec{b}}_{1}}\times {{\vec{b}}_{2}} $ that is $ \left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right| $ . Therefore, we get, $ \left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|=\sqrt{{{\left( -11 \right)}^{2}}+{{\left( 2 \right)}^{2}}+{{\left( 5 \right)}^{2}}} $ This is obtained by squaring all the terms, adding them up and taking the square root. Solving this we get, $ \begin{aligned} & \left| {{{\vec{b}}}_{1}}\times {{{\vec{b}}}_{2}} \right|=\sqrt{121+4+25} \\\ & =\sqrt{150} \end{aligned} $ Substituting all the values in equation (i), we get, Shortest distance = $ \left| \dfrac{\left( -11\hat{i}+2\hat{j}+5\hat{k} \right).\left( \hat{i}+2\hat{j}+2\hat{k} \right)}{\sqrt{150}} \right| $ Solving this and taking the dot product in the numerator we get, Shortest distance = $ \left| \dfrac{\left( -11\hat{i}+2\hat{j}+5\hat{k} \right).\left( \hat{i}+2\hat{j}+2\hat{k} \right)}{\sqrt{150}} \right| $ In dot product, we need to add the multiplication of the $ {{i}^{th}} $ , $ {{j}^{th}} $ and the $ {{k}^{th}} $ component. Solving this we get, $ \begin{aligned} & \text{Shortest distance}=\left| \dfrac{-11+4+10}{\sqrt{150}} \right| \\\ & =\dfrac{3}{\sqrt{150}} \\\ & =\dfrac{\sqrt{3}\times \sqrt{3}}{\sqrt{3\times 5\times 2\times 5}} \\\ & =\dfrac{\sqrt{3}}{\sqrt{5\times 2\times 5}} \\\ & =\dfrac{\sqrt{3}}{5\sqrt{2}} \\\ & =\dfrac{\sqrt{3}\times \sqrt{2}}{5\sqrt{2}\times \sqrt{2}} \\\ & =\dfrac{\sqrt{6}}{5\times 2} \\\ & =\dfrac{\sqrt{6}}{10} \end{aligned} $ Hence the shortest distance between two lines is $ \dfrac{\sqrt{6}}{10} $ units. **Note** : We need to be careful while performing the cross product there is a negative sign in the $ \hat{j} $ part. We have asked to find the distance therefore, we need to take the modulus of all the scalar terms. Also, while calculating $ \left( {{{\vec{a}}}_{2}}-{{{\vec{a}}}_{1}} \right) $ and not $ \left( {{{\vec{a}}}_{1}}-{{{\vec{a}}}_{2}} \right) $ .