Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Find the shortest distance between lines r\overrightarrow{r}=6i^+2j^+2k^6\hat i+2\hat j+2\hat k+λ(i^+2j^+2k^\hat i+2\hat j+2\hat k)andr\overrightarrow{r}=-4i^k^-4\hat i-\hat k+μ(3i^+2j^+2k^3\hat i+2\hat j+2\hat k).

Answer

The given lines are
r\overrightarrow{r}=6i^+2j^+2k^6\hat i+2\hat j+2\hat k+λ(i^+2j^+2k^\hat i+2\hat j+2\hat k)...(1)
r\overrightarrow{r}=4i^k^-4\hat i-\hat k+μ(3i^+2j^+2k^3\hat i+2\hat j+2\hat k)...(2)

It is known that the shortest distance between two lines,r\overrightarrow{r}=a1\overrightarrow{a_1}b1\overrightarrow{b_1}and r\overrightarrow{r}=a2\overrightarrow{a_2}b2\overrightarrow{b_2}, is given by
d=|(b1\overrightarrow{b_1}×b2\overrightarrow{b_2}).(a2\overrightarrow{a_2}-a1\overrightarrow{a_1}) / |b1\overrightarrow{b_1}×b2\overrightarrow{b_2}||...(3)

Comparing r\overrightarrow{r}=a1\overrightarrow{a_1}→+λb1\overrightarrow{b_1}→ and r\overrightarrow{r}=a2\overrightarrow{a_2}b2\overrightarrow{b_2}→ to equations(1) and (2), we obtain

a1\overrightarrow{a_1}=6i^+2j^+2k^6\hat i+2\hat j+2\hat k b1\overrightarrow{b_1}→=i^+2j^+2k^\hat i+2\hat j+2\hat k a2\overrightarrow{a_2}=-4i^k^-4\hat i-\hat k b2\overrightarrow{b_2} = 3i^+2j^+2k^3\hat i+2\hat j+2\hat k

a1\overrightarrow{a_1}-a2\overrightarrow{a_2}=(4i^k^-4\hat i-\hat k)-(6i^+2j^+2k^6\hat i+2\hat j+2\hat k)=10i^2j^3k^-10\hat i-2\hat j-3\hat k

b1\overrightarrow{b_1}×b2\overrightarrow{b_2}=i^j^k^ 122 322\begin{vmatrix} \hat i & \hat j & \hat k\\\ 1 & -2 & 2 \\\ 3 &-2&-2\end{vmatrix}=(4+4)i^\hat i-(-2-6)k^\hat k=8i^+8j^+4k^8\hat i+8\hat j+4\hat k

∴|b1\overrightarrow{b_1}×b2\overrightarrow{b_2}|

=(8)2+(8)2+(4)2\sqrt{√(8)^2+(8)^2+(4)^2}

=12 (b1\overrightarrow{b_1}×b2\overrightarrow{b_2}).(a2-a1)
=(8i^+8j^+4k^8\hat i+8\hat j+4\hat k).(10i^2j^3k^-10\hat i-2\hat j-3\hat k)
=-80-16-12
=-108

Substituting all the values in equation(1), we obtain
d=|-108/12|=9

Therefore, the shortest distance between the two given lines is 9 units.