Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find the second order derivatives of the function
sin(logx)sin(logx)

Answer

The correct answer is =[sin(logx)+cos(logx)]x2=\frac{-[sin(logx)+cos(logx)]}{x^2}
Let y=sin(logx)y=sin(logx)
Then,
dydx=ddx(sin(logx))=cos(logx).ddx(logx)=cos(logx)x\frac{dy}{dx}=\frac{d}{dx}(sin(logx))=cos(logx).\frac{d}{dx}(logx)=\frac{cos(logx)}{x}
d2ydx2=ddx[cos(logx)x]∴\frac{d^2y}{dx^2}=\frac{d}{dx}[\frac{cos(logx)}{x}]
=x.ddx[cos(logx)]cos(logx).ddx(x)x2=\frac{x.\frac{d}{dx}[cos(logx)]-cos(logx).\frac{d}{dx}(x)}{x^2}
=x.[sin(logx).ddx(logx)]cos(logx).1x2=\frac{x.[-sin(logx).\frac{d}{dx}(logx)]-cos(logx).1}{x^2}
=xsin(logx).1xcos(logx)x2=\frac{-xsin(logx).\frac{1}{x}-cos(logx)}{x^2}
=[sin(logx)+cos(logx)]x2=\frac{-[sin(logx)+cos(logx)]}{x^2}