Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find the second order derivatives of the function
log(logx)log(logx)

Answer

The correct answer is (1+logx)(xlogx)2\frac{-(1+logx)}{(xlogx)^2}
Let y=log(logx)y=log(logx)
Then,
dydx=ddxlog(logx)=1logx.ddx(logx)=1xlogx=(xlogx)1\frac{dy}{dx}=\frac{d}{dx}log(logx)=\frac{1}{logx}.\frac{d}{dx}(logx)=\frac{1}{xlogx}=(xlogx)^{-1}
d2ydx2=ddx[(xlogx)1]∴\frac{d^2y}{dx^2}=\frac{d}{dx}[(xlogx)^{-1}]
=1(xlogx)2.ddx(xlogx)=-1(xlogx)^{-2}.\frac{d}{dx}(xlogx)
=(1(xlogx)2).[logx.ddx(x)+x.ddx(logx)]=(\frac{-1}{(xlogx)^2}).[logx.\frac{d}{dx}(x)+x.\frac{d}{dx}(logx)]
=1(xlogx)2.[logx.1+x.1x]=(1+logx)(xlogx)2=\frac{-1}{(xlogx)^2}.[logx.1+x.\frac{1}{x}]=\frac{-(1+logx)}{(xlogx)^2}