Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find the second order derivatives of the function
tan1xtan^{-1}x

Answer

The correct answer is =2x(1+x2)2=\frac{-2x}{(1+x^2)^2}
Let y=tan1xy=tan^{-1}x
Then,
dydx=ddx(tan1x)=11+x2\frac{dy}{dx}=\frac{d}{dx}(tan^{-1}x)=\frac{1}{1+x^2}
d2ydx2=ddx[11+x2]∴\frac{d^2y}{dx^2}=\frac{d}{dx}[\frac{1}{1+x^2}]
=ddx(1+x2)1=\frac{d}{dx}(1+x^2)^{-1}
=(1).(1+x2)2.ddx(1+x2)=(-1).(1+x^2)^{-2}.\frac{d}{dx}(1+x^2)
=1(1+x2)2×2x=\frac{-1}{(1+x^2)^2}\times 2x
=2x(1+x2)2=\frac{-2x}{(1+x^2)^2}