Question
Mathematics Question on Continuity and differentiability
Find the second order derivatives of the function
e6xcos3x
Answer
The correct answer is =9e6x(3cos3x−4sin3x)
Let y=e6xcos3x
Then,
dxdy=dxd(e6xcos3x)=cos3x.dxd(e6x)+e6x.dxd(cos3x)
=cos3x.e6x.dxd(6x)+e6x.(−sin3x).dxd(3x)
=6e6xcos3x−3e6xsin3x......(1)
∴dx2d2y=dxd[6e6xcos3x−3e6xsin3x]=6.dxd(e6xcos3x)−3.dxd(e6xsin3x)
=6.[6e6xcos3x−3e6xsin3x]−3.[sin3x.dxd(e6x)+e6x.dxd(sin3x)] [using(1)]
=36e6xcos3x−18e6xsin3x−3[sin3x.e6x.6+e6x.cos3x.3]
=36e6xcos3x−18e6xsin3x−18e6xsin3x−9e6xcos3x
=27e6xcos3x−36e6xsin3x
=9e6x(3cos3x−4sin3x)