Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find the second order derivatives of the function
e6xcos3xe^{6x}cos3x

Answer

The correct answer is =9e6x(3cos3x4sin3x)=9e^{6x}(3cos3x-4sin3x)
Let y=e6xcos3xy=e^{6x}cos3x
Then,
dydx=ddx(e6xcos3x)=cos3x.ddx(e6x)+e6x.ddx(cos3x)\frac{dy}{dx}=\frac{d}{dx}(e^{6x}cos3x)=cos3x.\frac{d}{dx}(e^{6x})+e^{6x}.\frac{d}{dx}(cos3x)
=cos3x.e6x.ddx(6x)+e6x.(sin3x).ddx(3x)=cos3x.e^{6x}.\frac{d}{dx}(6x)+e^{6x}.(-sin3x).\frac{d}{dx}(3x)
=6e6xcos3x3e6xsin3x......(1)=6e^{6x}cos3x-3e^{6x}sin3x ......(1)
d2ydx2=ddx[6e6xcos3x3e6xsin3x]=6.ddx(e6xcos3x)3.ddx(e6xsin3x)∴\frac{d^2y}{dx^2}=\frac{d}{dx}[6e^{6x}cos3x-3e^{6x}sin3x]=6.\frac{d}{dx}(e^{6x}cos3x)-3.\frac{d}{dx}(e^{6x}sin3x)
=6.[6e6xcos3x3e6xsin3x]3.[sin3x.ddx(e6x)+e6x.ddx(sin3x)]=6.[6e^{6x}cos3x-3e^{6x}sin3x]-3.[sin3x.\frac{d}{dx}(e^{6x})+e^{6x}.\frac{d}{dx}(sin3x)] [using(1)]
=36e6xcos3x18e6xsin3x3[sin3x.e6x.6+e6x.cos3x.3]=36e^{6x}cos3x-18e^{6x}sin3x-3[sin3x.e^{6x}.6+e^{6x}.cos3x.3]
=36e6xcos3x18e6xsin3x18e6xsin3x9e6xcos3x=36e^{6x}cos3x-18e^{6x}sin3x-18e^{6x}sin3x-9e^{6x}cos3x
=27e6xcos3x36e6xsin3x=27e^{6x}cos3x-36e^{6x}sin3x
=9e6x(3cos3x4sin3x)=9e^{6x}(3cos3x-4sin3x)