Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find the second order derivatives of the function
exsin5xe^xsin5x

Answer

The correct answer is 2ex(5cos5x12sin5x)2e^x(5cos5x-12sin5x)
Let y=exsin5xy=e^xsin5x
Then,
dydx=ddx(exsin5x)=sin5x.ddx(ex)+exddx(sin5x)\frac{dy}{dx}=\frac{d}{dx}(e^xsin5x)=sin5x.\frac{d}{dx}(e^x)+e^x\frac{d}{dx}(sin5x)
=sin5x.ex+ex.cos5xddx(5x)=exsin5x+excos5x.5=sin5x.e^x+e^x.cos5x\frac{d}{dx}(5x)=e^xsin5x+e^xcos5x.5
=ex(sin5x+5cos5x)=e^x(sin5x+5cos5x)
d2ydx2=ddx[ex(sin5x+5cos5x)]∴\frac{d^2y}{dx^2}=\frac{d}{dx}[e^x(sin5x+5cos5x)]
=(sin5x+5cos5x).ddx(ex)+ex.ddx(sin5x+5cos5x)=(sin5x+5cos5x).\frac{d}{dx}(e^x)+e^x.\frac{d}{dx}(sin5x+5cos5x)
=(sin5x+5cos5x)ex+ex[cos5x.ddx(5x)+5(sin5x).ddx(5x)]=(sin5x+5cos5x)e^x+e^x[cos5x.\frac{d}{dx}(5x)+5(-sin5x).\frac{d}{dx}(5x)]
=ex(sin5x+5cos5x)+ex(5cos5x25sin5x)=e^x(sin5x+5cos5x)+e^x(5cos5x-25sin5x)
Then, ex(10cos5x24sin5x)=2ex(5cos5x12sin5x)e^x(10cos5x-24sin5x)=2e^x(5cos5x-12sin5x)