Question
Mathematics Question on Continuity and differentiability
Find the second order derivatives of the function
exsin5x
Answer
The correct answer is 2ex(5cos5x−12sin5x)
Let y=exsin5x
Then,
dxdy=dxd(exsin5x)=sin5x.dxd(ex)+exdxd(sin5x)
=sin5x.ex+ex.cos5xdxd(5x)=exsin5x+excos5x.5
=ex(sin5x+5cos5x)
∴dx2d2y=dxd[ex(sin5x+5cos5x)]
=(sin5x+5cos5x).dxd(ex)+ex.dxd(sin5x+5cos5x)
=(sin5x+5cos5x)ex+ex[cos5x.dxd(5x)+5(−sin5x).dxd(5x)]
=ex(sin5x+5cos5x)+ex(5cos5x−25sin5x)
Then, ex(10cos5x−24sin5x)=2ex(5cos5x−12sin5x)