Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find the second order derivatives of the function
x3logxx^3logx

Answer

The correct answer is =x(5+6logx)=x(5+6\,logx)
Let y=x3logxy=x^3logx
Then,
dydx=ddx(x3logx)=logx.ddx(x3)+x3.ddx(logx)\frac{dy}{dx}=\frac{d}{dx}(x^3logx)=logx.\frac{d}{dx}(x^3)+x^3.\frac{d}{dx}(logx)
=logx.3x2+x3.1x=logx.3x2+x2=logx.3x^2+x^3.\frac{1}{x}=logx.3x^2+x^2
=x2(1+3logx)=x^2(1+3logx)
d2ydx2=ddx[x2(1+3logx)]∴\frac{d^2y}{dx^2}=\frac{d}{dx}[x^2(1+3logx)]
=(1+3logx).ddx(x2)+x2ddx(1+3logx)=(1+3logx).\frac{d}{dx}(x^2)+x^2\frac{d}{dx}(1+3logx)
=(1+3logx).2x+x2.3x=(1+3logx).2x+x^2.\frac{3}{x}
=2x+6xlogx+3x=2x+6x\,logx+3x
=5x+6xlogx=5x+6x\,logx
=x(5+6logx)=x(5+6\,logx)