Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find the second order derivatives of the function
x.cosxx.cosx

Answer

The correct answer is =(xcosx+2sinx)=-(xcosx+2sinx)
Let y=x.cosxy=x.cosx
Then,
dydx=ddx(x.cosx)=cosx.ddx(x)+xddx(cosx)\frac{dy}{dx}=\frac{d}{dx}(x.cosx)=cosx.\frac{d}{dx}(x)+x\frac{d}{dx}(cosx)
=cosx.1+x(sinx)=cosxxsinx=cosx.1+x(-sinx)=cosx-xsinx
d2ydx2=ddx(cosxxsinx)=ddx(cosx)ddx(xsinx)∴\frac{d^2y}{dx^2}=\frac{d}{dx}(cosx-xsinx)=\frac{d}{dx}(cosx)-\frac{d}{dx}(xsinx)
=sinx[sinx.ddx(x)+x.ddx(sinx)]=-sinx-[sinx.\frac{d}{dx}(x)+x.\frac{d}{dx}(sinx)]
=sinx(sinx+xcosx)=-sinx-(sinx+xcosx)
=(xcosx+2sinx)=-(xcosx+2sinx)