Question
Mathematics Question on Continuity and differentiability
Find the second order derivatives of the function
x.cosx
Answer
The correct answer is =−(xcosx+2sinx)
Let y=x.cosx
Then,
dxdy=dxd(x.cosx)=cosx.dxd(x)+xdxd(cosx)
=cosx.1+x(−sinx)=cosx−xsinx
∴dx2d2y=dxd(cosx−xsinx)=dxd(cosx)−dxd(xsinx)
=−sinx−[sinx.dxd(x)+x.dxd(sinx)]
=−sinx−(sinx+xcosx)
=−(xcosx+2sinx)