Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Find the second order derivatives of the function
x2+3x+2x^2+3x+2

Answer

The correct answer is 2
Let y=x2+3x+2y=x^2+3x+2
Then,
dydx=ddx(x2)+ddx(3x)+ddx(2)=2x+3+0=2x+3\frac{dy}{dx}=\frac{d}{dx}(x^2)+\frac{d}{dx}(3x)+\frac{d}{dx}(2)=2x+3+0=2x+3
d2ydx2=ddx(2x+3)=ddx(2x)+ddx(3)=2+0=2∴\frac{d^2y}{dx^2}=\frac{d}{dx}(2x+3)=\frac{d}{dx}(2x)+\frac{d}{dx}(3)=2+0=2