Solveeit Logo

Question

Question: Find the second derivative of the following function. \[y=\arctan \sqrt{{{e}^{x}}-1}\]...

Find the second derivative of the following function. y=arctanex1y=\arctan \sqrt{{{e}^{x}}-1}

Explanation

Solution

Hint: Use chain rule of composition of three functions to differentiate the given function twice. Use the fact that differentiation of function of the form y=aex+by=a{{e}^{x}}+b is dydx=aex\dfrac{dy}{dx}=a{{e}^{x}},y=axn+by=a{{x}^{n}}+b is dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}} and y=arctanxy=\arctan x is dydx=11+x2\dfrac{dy}{dx}=\dfrac{1}{1+{{x}^{2}}}.

Complete step-by-step answer:
To find the second derivative of the function y=arctanex1y=\arctan \sqrt{{{e}^{x}}-1}, we will differentiate it twice with respect to the variable x.
To find the first derivative, we will differentiate the function y with respect to x.
We will use chain rule of differentiation of composition of three functions to find the derivative which states that if y is a composition of three functions f(x)f(x),g(x)g(x) and h(x)h(x) such that y=f(g(h(x)))y=f(g(h(x))), then dydx=df(g(h(x)))dg(h(x))×dg(h(x))dh(x)×dh(x)dx\dfrac{dy}{dx}=\dfrac{df(g(h(x)))}{dg(h(x))}\times \dfrac{dg(h(x))}{dh(x)}\times \dfrac{dh(x)}{dx}.
Substituting f(x)=arctanxf(x)=\arctan x, g(x)=xg(x)=\sqrt{x} and h(x)=ex1h(x)={{e}^{x}}-1 in the above equation, we get dydx=darctanex1dex1×dex1d(ex1)×ddx(ex1).....(1)\dfrac{dy}{dx}=\dfrac{d\arctan \sqrt{{{e}^{x}}-1}}{d\sqrt{{{e}^{x}}-1}}\times \dfrac{d\sqrt{{{e}^{x}}-1}}{d({{e}^{x}}-1)}\times \dfrac{d}{dx}({{e}^{x}}-1).....\left( 1 \right).
We know that differentiation of any function of the form y=aex+by=a{{e}^{x}}+b is dydx=aex\dfrac{dy}{dx}=a{{e}^{x}}.
Substituting a=1,b=0a=1,b=0 in the above equation, we get ddxh(x)=ddx(ex1)=ex.....(2)\dfrac{d}{dx}h(x)=\dfrac{d}{dx}({{e}^{x}}-1)={{e}^{x}}.....\left( 2 \right).
To find the value of dex1d(ex1)\dfrac{d\sqrt{{{e}^{x}}-1}}{d({{e}^{x}}-1)}, we will substitute t=ex1t={{e}^{x}}-1.
Thus, we have dex1d(ex1)=dtdt\dfrac{d\sqrt{{{e}^{x}}-1}}{d({{e}^{x}}-1)}=\dfrac{d\sqrt{t}}{dt}.
We know that differentiation of any function of the form y=axn+by=a{{x}^{n}}+b is dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Substituting a=1,n=12,b=0a=1,n=\dfrac{1}{2},b=0 in the above equation, we get dtdt=12t\dfrac{d\sqrt{t}}{dt}=\dfrac{1}{2\sqrt{t}}.
Thus, we have dex1d(ex1)=dtdt=12t=12ex1.....(3)\dfrac{d\sqrt{{{e}^{x}}-1}}{d({{e}^{x}}-1)}=\dfrac{d\sqrt{t}}{dt}=\dfrac{1}{2\sqrt{t}}=\dfrac{1}{2\sqrt{{{e}^{x}}-1}}.....\left( 3 \right).
To find the value of darctanex1dex1\dfrac{d\arctan \sqrt{{{e}^{x}}-1}}{d\sqrt{{{e}^{x}}-1}}, let’s assume z=ex1z=\sqrt{{{e}^{x}}-1}.
Thus, we have darctanex1dex1=darctanzdz\dfrac{d\arctan \sqrt{{{e}^{x}}-1}}{d\sqrt{{{e}^{x}}-1}}=\dfrac{d\arctan z}{dz}.
We know that differentiation of any function of the form y=arctanxy=\arctan x is dydx=11+x2\dfrac{dy}{dx}=\dfrac{1}{1+{{x}^{2}}}.
So, we have darctanex1dex1=darctanzdz=11+z2=11+ex1=1ex....(4)\dfrac{d\arctan \sqrt{{{e}^{x}}-1}}{d\sqrt{{{e}^{x}}-1}}=\dfrac{d\arctan z}{dz}=\dfrac{1}{1+{{z}^{2}}}=\dfrac{1}{1+{{e}^{x}}-1}=\dfrac{1}{{{e}^{x}}}....\left( 4 \right).
Substituting equation (2)(2), (3)(3) and (4)(4) in equation (1)(1), we get dydx=darctanex1dex1×dex1d(ex1)×ddx(ex1)=1ex×12ex1×ex=12ex1\dfrac{dy}{dx}=\dfrac{d\arctan \sqrt{{{e}^{x}}-1}}{d\sqrt{{{e}^{x}}-1}}\times \dfrac{d\sqrt{{{e}^{x}}-1}}{d({{e}^{x}}-1)}\times \dfrac{d}{dx}({{e}^{x}}-1)=\dfrac{1}{{{e}^{x}}}\times \dfrac{1}{2\sqrt{{{e}^{x}}-1}}\times {{e}^{x}}=\dfrac{1}{2\sqrt{{{e}^{x}}-1}}.
Thus, we have dydx=12ex1\dfrac{dy}{dx}=\dfrac{1}{2\sqrt{{{e}^{x}}-1}} as the first derivative of the given function.
Now, to find the second derivative, we will again differentiate the function dydx\dfrac{dy}{dx} as d2ydx2=ddx(dydx)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right).
Let’s assume a(x)=dydx=12ex1=12(ex1)12a(x)=\dfrac{dy}{dx}=\dfrac{1}{2\sqrt{{{e}^{x}}-1}}=\dfrac{1}{2}{{\left( {{e}^{x}}-1 \right)}^{\dfrac{-1}{2}}}.
So, we have d2ydx2=ddxa(x)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}a(x).
We can rewrite a(x)=v(u(x))a(x)=v\left( u\left( x \right) \right) as a composition of two functions u(x)u(x) and v(x)v(x) such that u(x)=ex1u(x)={{e}^{x}}-1 and v(x)=12x12v(x)=\dfrac{1}{2}{{x}^{\dfrac{-1}{2}}}.
We will use chain rule of differentiation of composition of two functions to find the derivative which states that if y is a composition of two functions u(x)u(x) and v(x)v(x) such that y=v(u(x))y=v\left( u\left( x \right) \right), then dydx=dv(u(x))du(x)×du(x)dx\dfrac{dy}{dx}=\dfrac{dv\left( u\left( x \right) \right)}{du\left( x \right)}\times \dfrac{du(x)}{dx}.
Substituting u(x)=ex1u(x)={{e}^{x}}-1 and v(x)=12x12v(x)=\dfrac{1}{2}{{x}^{\dfrac{-1}{2}}} in the above equation, we get da(x)dx=dydx=d(12(ex1)12)d(ex1)×d(ex1)dx.....(5)\dfrac{da(x)}{dx}=\dfrac{dy}{dx}=\dfrac{d\left( \dfrac{1}{2}{{\left( {{e}^{x}}-1 \right)}^{\dfrac{-1}{2}}} \right)}{d\left( {{e}^{x}}-1 \right)}\times \dfrac{d\left( {{e}^{x}}-1 \right)}{dx}.....\left( 5 \right).
We know that differentiation of any function of the form y=aex+by=a{{e}^{x}}+b is dydx=aex\dfrac{dy}{dx}=a{{e}^{x}}.
Substituting a=1,b=0a=1,b=0 in the above equation, we get ddxu(x)=ddx(ex1)=ex.....(6)\dfrac{d}{dx}u(x)=\dfrac{d}{dx}({{e}^{x}}-1)={{e}^{x}}.....\left( 6 \right).
To find the value of d(12(ex1)12)d(ex1)\dfrac{d\left( \dfrac{1}{2}{{\left( {{e}^{x}}-1 \right)}^{\dfrac{-1}{2}}} \right)}{d\left( {{e}^{x}}-1 \right)}, we will assume t=ex1t={{e}^{x}}-1.
We can rewrite the above equation as d(12(ex1)12)d(ex1)=d(12t12)dt\dfrac{d\left( \dfrac{1}{2}{{\left( {{e}^{x}}-1 \right)}^{\dfrac{-1}{2}}} \right)}{d\left( {{e}^{x}}-1 \right)}=\dfrac{d\left( \dfrac{1}{2}{{t}^{\dfrac{-1}{2}}} \right)}{dt}.
We know that differentiation of any function of the form y=axn+by=a{{x}^{n}}+b is dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Substituting a=12,n=12,b=0a=\dfrac{1}{2},n=\dfrac{-1}{2},b=0 in the above equation, we have d(12t12)dt=12(12)t32=14t32\dfrac{d\left( \dfrac{1}{2}{{t}^{\dfrac{-1}{2}}} \right)}{dt}=\dfrac{1}{2}\left( \dfrac{-1}{2} \right){{t}^{\dfrac{-3}{2}}}=\dfrac{-1}{4}{{t}^{\dfrac{-3}{2}}}.
So, we have d(12(ex1)12)d(ex1)=d(12t12)dt=14t32=14(ex1)32.....(7)\dfrac{d\left( \dfrac{1}{2}{{\left( {{e}^{x}}-1 \right)}^{\dfrac{-1}{2}}} \right)}{d\left( {{e}^{x}}-1 \right)}=\dfrac{d\left( \dfrac{1}{2}{{t}^{\dfrac{-1}{2}}} \right)}{dt}=\dfrac{-1}{4}{{t}^{\dfrac{-3}{2}}}=\dfrac{-1}{4}{{\left( {{e}^{x}}-1 \right)}^{\dfrac{-3}{2}}}.....\left( 7 \right).
Substituting the value of equation (6)(6) and (7)(7) in equation (5)(5), we have da(x)dx=dydx=d(12(ex1)12)d(ex1)×d(ex1)dx=14(ex1)32×ex=ex4(ex1)32\dfrac{da(x)}{dx}=\dfrac{dy}{dx}=\dfrac{d\left( \dfrac{1}{2}{{\left( {{e}^{x}}-1 \right)}^{\dfrac{-1}{2}}} \right)}{d\left( {{e}^{x}}-1 \right)}\times \dfrac{d\left( {{e}^{x}}-1 \right)}{dx}=\dfrac{-1}{4}{{\left( {{e}^{x}}-1 \right)}^{\dfrac{-3}{2}}}\times {{e}^{x}}=\dfrac{-{{e}^{x}}}{4{{\left( {{e}^{x}}-1 \right)}^{\dfrac{3}{2}}}}.
Thus, we have d2ydx2=ddxa(x)=ex4(ex1)32\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}a(x)=\dfrac{-{{e}^{x}}}{4{{\left( {{e}^{x}}-1 \right)}^{\dfrac{3}{2}}}}.
Hence, the second derivative of y=arctanex1y=\arctan \sqrt{{{e}^{x}}-1} is ex4(ex1)32\dfrac{-{{e}^{x}}}{4{{\left( {{e}^{x}}-1 \right)}^{\dfrac{3}{2}}}}.

Note: We can also solve this question using First Principle to find the derivative. One must know that arctanx=tan1x\arctan x={{\tan }^{-1}}x. It is necessary to use the chain rule of differentiation for composition of two functions. Otherwise, we won’t be able to find the second derivative of the given function. Also, one must know that the first derivative of any function is the slope of the function.