Solveeit Logo

Question

Question: Find the second derivative of the following function. \[y={{e}^{\sqrt{x}}}\sqrt{{{x}^{2}}-1}\]...

Find the second derivative of the following function. y=exx21y={{e}^{\sqrt{x}}}\sqrt{{{x}^{2}}-1}

Explanation

Solution

- Hint: Use product rule and chain rule of composition of two functions to differentiate the given function twice. Use the fact that differentiation of function y=exy={{e}^{x}} is dydx=ex\dfrac{dy}{dx}={{e}^{x}} and y=axn+by=a{{x}^{n}}+b is dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.

Complete step-by-step solution -

To find the second derivative of the functiony=exx21y={{e}^{\sqrt{x}}}\sqrt{{{x}^{2}}-1}, we will differentiate it twice with respect to the variablexx.
To find the first derivative, we will differentiate the functionyywith respect toxx.
We will use the product rule of differentiation of product of two functions which states thatddxa(x)=ddx(u(x)×v(x))=v(x)×ddxu(x)+u(x)ddxv(x)\dfrac{d}{dx}a(x)=\dfrac{d}{dx}\left( u(x)\times v(x) \right)=v(x)\times \dfrac{d}{dx}u(x)+u(x)\dfrac{d}{dx}v(x).
Substitutingu(x)=ex,v(x)=x21u(x)={{e}^{\sqrt{x}}},v(x)=\sqrt{{{x}^{2}}-1}in the above equation, we haveddxa(x)=ddx(exx21)=x21×ddx(ex)+exddx(x21)\dfrac{d}{dx}a(x)=\dfrac{d}{dx}\left( {{e}^{\sqrt{x}}}\sqrt{{{x}^{2}}-1} \right)=\sqrt{{{x}^{2}}-1}\times \dfrac{d}{dx}({{e}^{\sqrt{x}}})+{{e}^{\sqrt{x}}}\dfrac{d}{dx}(\sqrt{{{x}^{2}}-1})....(1)...(1)
To find the value ofddx(ex)\dfrac{d}{dx}({{e}^{\sqrt{x}}}), let’s assumeu(x)=exu(x)={{e}^{\sqrt{x}}}as a composition of two functions such thatu(x)=f(g(x))u(x)=f(g(x))wheref(x)=ex,g(x)=xf(x)={{e}^{x}},g(x)=\sqrt{x}.
We will use chain rule of differentiation of composition of two functions to find the derivative which states that ifyyis a composition of two functionsf(x)f(x)andg(x)g(x)such thaty=f(g(x))y=f(g(x)), thendydx=df(g(x))dg(x)×dg(x)dx\dfrac{dy}{dx}=\dfrac{df(g(x))}{dg(x)}\times \dfrac{dg(x)}{dx}.
Substitutingf(x)=ex,g(x)=xf(x)={{e}^{x}},g(x)=\sqrt{x}in the above equation, we getddxu(x)=df(g(x))dg(x)×dg(x)dx=dexd(x)×d(x)dx\dfrac{d}{dx}u(x)=\dfrac{df(g(x))}{dg(x)}\times \dfrac{dg(x)}{dx}=\dfrac{d{{e}^{\sqrt{x}}}}{d(\sqrt{x})}\times \dfrac{d(\sqrt{x})}{dx}. ...(2)...(2)
To find the value ofdexd(x)\dfrac{d{{e}^{\sqrt{x}}}}{d(\sqrt{x})}, let’s assumet=xt=\sqrt{x}.
Thus, we havedexd(x)=d(et)dt\dfrac{d{{e}^{\sqrt{x}}}}{d(\sqrt{x})}=\dfrac{d({{e}^{t}})}{dt}.
We know that differentiation of any function of the formy=exy={{e}^{x}}isdydx=ex\dfrac{dy}{dx}={{e}^{x}}.
So, we havedexd(x)=d(et)dt=et=ex\dfrac{d{{e}^{\sqrt{x}}}}{d(\sqrt{x})}=\dfrac{d({{e}^{t}})}{dt}={{e}^{t}}={{e}^{\sqrt{x}}}. ...(3)...(3)
We know that differentiation of any function of the formy=axn+by=a{{x}^{n}}+bisdydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Substitutinga=1,n=12,b=0a=1,n=\dfrac{1}{2},b=0in the above equation, we haved(x)dx=12x\dfrac{d(\sqrt{x})}{dx}=\dfrac{1}{2\sqrt{x}}. ...(4)...(4)
Substituting equation(3)(3)and(4)(4)in equation(2)(2), we getddxu(x)=dexd(x)×d(x)dx=ex×12x=ex2x\dfrac{d}{dx}u(x)=\dfrac{d{{e}^{\sqrt{x}}}}{d(\sqrt{x})}\times \dfrac{d(\sqrt{x})}{dx}={{e}^{\sqrt{x}}}\times \dfrac{1}{2\sqrt{x}}=\dfrac{{{e}^{\sqrt{x}}}}{2\sqrt{x}}. ...(5)...(5)
To find the value ofddx(x21)\dfrac{d}{dx}(\sqrt{{{x}^{2}}-1}), let’s assumev(x)=x21v(x)=\sqrt{{{x}^{2}}-1} as a composition of two functions such thatv(x)=α(β(x))v(x)=\alpha (\beta (x)) whereα(x)=x,β(x)=x21\alpha (x)=\sqrt{x},\beta (x)={{x}^{2}}-1.
We will use chain rule of differentiation of composition of two functions to find the derivative which states that ifyyis a composition of two functionsα(x)\alpha (x)andβ(x)\beta (x)such thaty=α(β(x))y=\alpha (\beta (x)), thendydx=dα(β(x))dβ(x)×dβ(x)dx\dfrac{dy}{dx}=\dfrac{d\alpha (\beta (x))}{d\beta (x)}\times \dfrac{d\beta (x)}{dx}.
Substitutingα(x)=x,β(x)=x21\alpha (x)=\sqrt{x},\beta (x)={{x}^{2}}-1in the above equation, we havedydx=dα(β(x))dβ(x)×dβ(x)dx=d(x21)d(x21)×d(x21)dx\dfrac{dy}{dx}=\dfrac{d\alpha (\beta (x))}{d\beta (x)}\times \dfrac{d\beta (x)}{dx}=\dfrac{d\left( \sqrt{{{x}^{2}}-1} \right)}{d({{x}^{2}}-1)}\times \dfrac{d({{x}^{2}}-1)}{dx}. ...(6)...\left( 6 \right)
To find the value ofd(x21)d(x21)\dfrac{d\left( \sqrt{{{x}^{2}}-1} \right)}{d({{x}^{2}}-1)}, let’s assumez=x21z={{x}^{2}}-1.
Thus, we haved(x21)d(x21)=d(z)dz\dfrac{d\left( \sqrt{{{x}^{2}}-1} \right)}{d({{x}^{2}}-1)}=\dfrac{d(\sqrt{z)}}{dz}.
We know that differentiation of any function of the formy=axn+by=a{{x}^{n}}+bisdydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Substitutinga=1,n=12,b=0a=1,n=\dfrac{1}{2},b=0in the above equation, we haved(x)dx=12x\dfrac{d(\sqrt{x})}{dx}=\dfrac{1}{2\sqrt{x}}.
So, we haved(x21)d(x21)=d(z)dz=12z=12x21\dfrac{d\left( \sqrt{{{x}^{2}}-1} \right)}{d({{x}^{2}}-1)}=\dfrac{d(\sqrt{z)}}{dz}=\dfrac{1}{2\sqrt{z}}=\dfrac{1}{2\sqrt{{{x}^{2}}-1}}. ...(7)...\left( 7 \right)
To find the value ofd(x21)dx\dfrac{d({{x}^{2}}-1)}{dx}, substitutea=1,n=2,b=1a=1,n=2,b=-1in the differentiation of any function of the formy=axn+by=a{{x}^{n}}+bisdydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Thus, we haved(x21)dx=2x\dfrac{d({{x}^{2}}-1)}{dx}=2x. ...(8)...\left( 8 \right)
Substituting equation(7)\left( 7 \right)and(8)\left( 8 \right)in equation(6)(6), we getdydx=d(x21)d(x21)×d(x21)dx=12x21×2x=xx21\dfrac{dy}{dx}=\dfrac{d\left( \sqrt{{{x}^{2}}-1} \right)}{d({{x}^{2}}-1)}\times \dfrac{d({{x}^{2}}-1)}{dx}=\dfrac{1}{2\sqrt{{{x}^{2}}-1}}\times 2x=\dfrac{x}{\sqrt{{{x}^{2}}-1}}. ...(9)...(9)
Substituting equation(5)(5)and(9)(9)in equation(1)(1), we getddxa(x)=ddx(exx21)=x21×ddx(ex)+exddx(x21)=x21×ex2x+ex×xx21\dfrac{d}{dx}a(x)=\dfrac{d}{dx}\left( {{e}^{\sqrt{x}}}\sqrt{{{x}^{2}}-1} \right)=\sqrt{{{x}^{2}}-1}\times \dfrac{d}{dx}({{e}^{\sqrt{x}}})+{{e}^{\sqrt{x}}}\dfrac{d}{dx}(\sqrt{{{x}^{2}}-1})=\sqrt{{{x}^{2}}-1}\times \dfrac{{{e}^{\sqrt{x}}}}{2\sqrt{x}}+{{e}^{\sqrt{x}}}\times \dfrac{x}{\sqrt{{{x}^{2}}-1}}
Solving the above equation, we getddxa(x)=ex(x212x+xx21)\dfrac{d}{dx}a(x)={{e}^{\sqrt{x}}}\left( \dfrac{\sqrt{{{x}^{2}}-1}}{2\sqrt{x}}+\dfrac{x}{\sqrt{{{x}^{2}}-1}} \right). ...(10)...(10)
Thus, we havedydx=ex(x212x+xx21)\dfrac{dy}{dx}={{e}^{\sqrt{x}}}\left( \dfrac{\sqrt{{{x}^{2}}-1}}{2\sqrt{x}}+\dfrac{x}{\sqrt{{{x}^{2}}-1}} \right)as the first derivative of the given function.
Now, to find the second derivative, we will again differentiate the functiondydx\dfrac{dy}{dx}asd2ydx2=ddx(dydx)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right).
Let’s assumeh(x)=dydx=ex(x212x+xx21)h(x)=\dfrac{dy}{dx}={{e}^{\sqrt{x}}}\left( \dfrac{\sqrt{{{x}^{2}}-1}}{2\sqrt{x}}+\dfrac{x}{\sqrt{{{x}^{2}}-1}} \right).
So, we haved2ydx2=ddxh(x)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}h(x).
We can writeh(x)h(x)as a product of two functions of the formh(x)=u(x)×γ(x)h(x)=u(x)\times \gamma (x)whereu(x)=exu(x)={{e}^{\sqrt{x}}}andγ(x)=x212x+xx21\gamma (x)=\dfrac{\sqrt{{{x}^{2}}-1}}{2\sqrt{x}}+\dfrac{x}{\sqrt{{{x}^{2}}-1}}.
We will use the product rule of differentiation of product of two functions which states thatddxh(x)=ddx(u(x)×γ(x))=γ(x)×ddxu(x)+u(x)ddxγ(x)\dfrac{d}{dx}h(x)=\dfrac{d}{dx}\left( u(x)\times \gamma (x) \right)=\gamma (x)\times \dfrac{d}{dx}u(x)+u(x)\dfrac{d}{dx}\gamma (x).
Substitutingu(x)=ex,γ(x)=x212x+xx21u(x)={{e}^{\sqrt{x}}},\gamma (x)=\dfrac{\sqrt{{{x}^{2}}-1}}{2\sqrt{x}}+\dfrac{x}{\sqrt{{{x}^{2}}-1}}in the above equation, we haveddxh(x)=γ(x)×ddxu(x)+u(x)ddxγ(x)=(x212x+xx21)×d(ex)dx+ex×ddx(x212x+xx21)\dfrac{d}{dx}h(x)=\gamma (x)\times \dfrac{d}{dx}u(x)+u(x)\dfrac{d}{dx}\gamma (x)=\left( \dfrac{\sqrt{{{x}^{2}}-1}}{2\sqrt{x}}+\dfrac{x}{\sqrt{{{x}^{2}}-1}} \right)\times \dfrac{d({{e}^{\sqrt{x}}})}{dx}+{{e}^{\sqrt{x}}}\times \dfrac{d}{dx}\left( \dfrac{\sqrt{{{x}^{2}}-1}}{2\sqrt{x}}+\dfrac{x}{\sqrt{{{x}^{2}}-1}} \right)
...(11)...(11)
To find the value ofddx(x212x+xx21)\dfrac{d}{dx}\left( \dfrac{\sqrt{{{x}^{2}}-1}}{2\sqrt{x}}+\dfrac{x}{\sqrt{{{x}^{2}}-1}} \right), we can writeγ(x)=x212x+xx21\gamma (x)=\dfrac{\sqrt{{{x}^{2}}-1}}{2\sqrt{x}}+\dfrac{x}{\sqrt{{{x}^{2}}-1}}as sum of two functionsα1(x){{\alpha }_{1}}(x)andα2(x){{\alpha }_{2}}(x).
We can use sum rule of differentiation of two functions which states that ify=α1(x)+α2(x)y={{\alpha }_{1}}(x)+{{\alpha }_{2}}(x), thendydx=ddxα1(x)+ddxα2(x)\dfrac{dy}{dx}=\dfrac{d}{dx}{{\alpha }_{1}}(x)+\dfrac{d}{dx}{{\alpha }_{2}}(x).
So, we haveddxγ(x)=ddxα1(x)+ddxα2(x)=ddx(x212x)+ddx(xx21)\dfrac{d}{dx}\gamma (x)=\dfrac{d}{dx}{{\alpha }_{1}}(x)+\dfrac{d}{dx}{{\alpha }_{2}}(x)=\dfrac{d}{dx}\left( \dfrac{\sqrt{{{x}^{2}}-1}}{2\sqrt{x}} \right)+\dfrac{d}{dx}\left( \dfrac{x}{\sqrt{{{x}^{2}}-1}} \right) ...(12)...\left( 12 \right)
To find the value ofddx(x212x)\dfrac{d}{dx}\left( \dfrac{\sqrt{{{x}^{2}}-1}}{2\sqrt{x}} \right), we will assume it as a quotient of two functionsv(x)β1(x)\dfrac{v(x)}{{{\beta }_{1}}(x)}wherev(x)=x21,β1(x)=2xv(x)=\sqrt{{{x}^{2}}-1},{{\beta }_{1}}(x)=2\sqrt{x}.
We will use quotient rule of differentiation which states that ify=v(x)β1(x)y=\dfrac{v(x)}{{{\beta }_{1}}(x)}then, we havedydx=β1(x)ddxv(x)v(x)ddxβ1(x)β12(x)\dfrac{dy}{dx}=\dfrac{{{\beta }_{1}}(x)\dfrac{d}{dx}v(x)-v(x)\dfrac{d}{dx}{{\beta }_{1}}(x)}{\beta _{1}^{2}(x)}.
Substitutingv(x)=x21,β1(x)=2xv(x)=\sqrt{{{x}^{2}}-1},{{\beta }_{1}}(x)=2\sqrt{x}in the above equation, we haveddxα1(x)=β1(x)ddxv(x)v(x)ddxβ1(x)β12(x)=2x×ddx(x21)(x21)×ddx(2x)(2x)2\dfrac{d}{dx}{{\alpha }_{1}}\left( x \right)=\dfrac{{{\beta }_{1}}(x)\dfrac{d}{dx}v(x)-v(x)\dfrac{d}{dx}{{\beta }_{1}}(x)}{\beta _{1}^{2}(x)}=\dfrac{2\sqrt{x}\times \dfrac{d}{dx}\left( \sqrt{{{x}^{2}}-1} \right)-\left( \sqrt{{{x}^{2}}-1} \right)\times \dfrac{d}{dx}\left( 2\sqrt{x} \right)}{{{\left( 2\sqrt{x} \right)}^{2}}} ...(13)...(13)
To find the value ofddxβ1(x)\dfrac{d}{dx}{{\beta }_{1}}(x), substitutea=2,n=12,b=0a=2,n=\dfrac{1}{2},b=0in the differentiation of any function of the formy=axn+by=a{{x}^{n}}+bisdydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Thus, we haveddxβ1(x)=ddx(2x)=1x\dfrac{d}{dx}{{\beta }_{1}}(x)=\dfrac{d}{dx}(2\sqrt{x})=\dfrac{1}{\sqrt{x}}. ...(14)...(14)
Substituting equation(9)\left( 9 \right)and(14)(14)in equation(13)\left( 13 \right), we haveddxα1(x)=2x×ddx(x21)(x21)×ddx(2x)(2x)2=2x×xx211x×x214x\dfrac{d}{dx}{{\alpha }_{1}}\left( x \right)=\dfrac{2\sqrt{x}\times \dfrac{d}{dx}\left( \sqrt{{{x}^{2}}-1} \right)-\left( \sqrt{{{x}^{2}}-1} \right)\times \dfrac{d}{dx}\left( 2\sqrt{x} \right)}{{{\left( 2\sqrt{x} \right)}^{2}}}=\dfrac{2\sqrt{x}\times \dfrac{x}{\sqrt{{{x}^{2}}-1}}-\dfrac{1}{\sqrt{x}}\times \sqrt{{{x}^{2}}-1}}{4x}.
Solving the above equation by taking LCM, we getddxα1(x)=x2+14x32x21\dfrac{d}{dx}{{\alpha }_{1}}\left( x \right)=\dfrac{{{x}^{2}}+1}{4{{x}^{\dfrac{3}{2}}}\sqrt{{{x}^{2}}-1}}. ...(15)...\left( 15 \right)
To find the value ofddx(xx21)\dfrac{d}{dx}\left( \dfrac{x}{\sqrt{{{x}^{2}}-1}} \right), we will assume it as a quotient of two functionsβ2(x)v(x)\dfrac{{{\beta }_{2}}(x)}{v(x)}wherev(x)=x21,β2(x)=xv(x)=\sqrt{{{x}^{2}}-1},{{\beta }_{2}}(x)=x.
We will use quotient rule of differentiation which states that ify=β2(x)v(x)y=\dfrac{{{\beta }_{2}}(x)}{v(x)}then, we havedydx=v(x)ddxβ2(x)β2(x)ddxv(x)v2(x)\dfrac{dy}{dx}=\dfrac{v(x)\dfrac{d}{dx}{{\beta }_{2}}(x)-{{\beta }_{2}}(x)\dfrac{d}{dx}v(x)}{{{v}^{2}}(x)}.
Substitutingv(x)=x21,β2(x)=xv(x)=\sqrt{{{x}^{2}}-1},{{\beta }_{2}}(x)=xin the above equation, we getdydx=v(x)ddxβ2(x)β2(x)ddxv(x)v2(x)=x21×ddx(x)x×ddx(x21)(x21)2\dfrac{dy}{dx}=\dfrac{v(x)\dfrac{d}{dx}{{\beta }_{2}}(x)-{{\beta }_{2}}(x)\dfrac{d}{dx}v(x)}{{{v}^{2}}(x)}=\dfrac{\sqrt{{{x}^{2}}-1}\times \dfrac{d}{dx}\left( x \right)-x\times \dfrac{d}{dx}\left( \sqrt{{{x}^{2}}-1} \right)}{{{\left( \sqrt{{{x}^{2}}-1} \right)}^{2}}}. ...(16)...\left( 16 \right)
To find the value ofddxβ2(x)\dfrac{d}{dx}{{\beta }_{2}}(x), substitutea=1,n=1,b=0a=1,n=1,b=0in the differentiation of any function of the formy=axn+by=a{{x}^{n}}+bisdydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Thus, we haveddxβ2(x)=ddx(x)=1\dfrac{d}{dx}{{\beta }_{2}}\left( x \right)=\dfrac{d}{dx}\left( x \right)=1. ...(17)...\left( 17 \right)
Substituting equation(9)\left( 9 \right)and(17)\left( 17 \right)in equation(16)\left( 16 \right), we haveddxα2(x)=x21×ddx(x)x×ddx(x21)(x21)2=x21×1x×xx21x21\dfrac{d}{dx}{{\alpha }_{2}}(x)=\dfrac{\sqrt{{{x}^{2}}-1}\times \dfrac{d}{dx}\left( x \right)-x\times \dfrac{d}{dx}\left( \sqrt{{{x}^{2}}-1} \right)}{{{\left( \sqrt{{{x}^{2}}-1} \right)}^{2}}}=\dfrac{\sqrt{{{x}^{2}}-1}\times 1-x\times \dfrac{x}{\sqrt{{{x}^{2}}-1}}}{{{x}^{2}}-1}.
Solving the above equation by taking LCM, we getddxα2(x)=1(x21)32\dfrac{d}{dx}{{\alpha }_{2}}\left( x \right)=\dfrac{-1}{{{\left( {{x}^{2}}-1 \right)}^{\dfrac{3}{2}}}}. ...(18)...\left( 18 \right)
Substituting equation(15)\left( 15 \right)and(18)\left( 18 \right)in equation(12)\left( 12 \right), we getddxγ(x)=ddx(x212x)+ddx(xx21)=x2+14x32x21+1(x21)32\dfrac{d}{dx}\gamma (x)=\dfrac{d}{dx}\left( \dfrac{\sqrt{{{x}^{2}}-1}}{2\sqrt{x}} \right)+\dfrac{d}{dx}\left( \dfrac{x}{\sqrt{{{x}^{2}}-1}} \right)=\dfrac{{{x}^{2}}+1}{4{{x}^{\dfrac{3}{2}}}\sqrt{{{x}^{2}}-1}}+\dfrac{-1}{{{\left( {{x}^{2}}-1 \right)}^{\dfrac{3}{2}}}}. ...(19)...\left( 19 \right)
Substituting equation(5)\left( 5 \right)and(19)\left( 19 \right)in equation(11)\left( 11 \right), we getddxh(x)=(x212x+xx21)×d(ex)dx+ex×ddx(x212x+xx21)=(x212x+xx21)×ex2x+ex×(x2+14x32x21+1(x21)32)\dfrac{d}{dx}h(x)=\left( \dfrac{\sqrt{{{x}^{2}}-1}}{2\sqrt{x}}+\dfrac{x}{\sqrt{{{x}^{2}}-1}} \right)\times \dfrac{d({{e}^{\sqrt{x}}})}{dx}+{{e}^{\sqrt{x}}}\times \dfrac{d}{dx}\left( \dfrac{\sqrt{{{x}^{2}}-1}}{2\sqrt{x}}+\dfrac{x}{\sqrt{{{x}^{2}}-1}} \right)=\left( \dfrac{\sqrt{{{x}^{2}}-1}}{2\sqrt{x}}+\dfrac{x}{\sqrt{{{x}^{2}}-1}} \right)\times \dfrac{{{e}^{\sqrt{x}}}}{2\sqrt{x}}+{{e}^{\sqrt{x}}}\times \left( \dfrac{{{x}^{2}}+1}{4{{x}^{\dfrac{3}{2}}}\sqrt{{{x}^{2}}-1}}+\dfrac{-1}{{{\left( {{x}^{2}}-1 \right)}^{\dfrac{3}{2}}}} \right)
Solving the above equation, we getddxh(x)=(x214x+x2x21)×ex+ex×(x2+14x32x21+1(x21)32)\dfrac{d}{dx}h(x)=\left( \dfrac{\sqrt{{{x}^{2}}-1}}{4x}+\dfrac{\sqrt{x}}{2\sqrt{{{x}^{2}}-1}} \right)\times {{e}^{\sqrt{x}}}+{{e}^{\sqrt{x}}}\times \left( \dfrac{{{x}^{2}}+1}{4{{x}^{\dfrac{3}{2}}}\sqrt{{{x}^{2}}-1}}+\dfrac{-1}{{{\left( {{x}^{2}}-1 \right)}^{\dfrac{3}{2}}}} \right).
Further simplifying the equation, we getddxh(x)=(x214x+x2x21+x2+14x32x21+1(x21)32)×ex\dfrac{d}{dx}h(x)=\left( \dfrac{\sqrt{{{x}^{2}}-1}}{4x}+\dfrac{\sqrt{x}}{2\sqrt{{{x}^{2}}-1}}+\dfrac{{{x}^{2}}+1}{4{{x}^{\dfrac{3}{2}}}\sqrt{{{x}^{2}}-1}}+\dfrac{-1}{{{\left( {{x}^{2}}-1 \right)}^{\dfrac{3}{2}}}} \right)\times {{e}^{\sqrt{x}}}.
Thus, we haved2ydx2=ddxh(x)=(x214x+x2x21+x2+14x32x21+1(x21)32)×ex\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}h(x)=\left( \dfrac{\sqrt{{{x}^{2}}-1}}{4x}+\dfrac{\sqrt{x}}{2\sqrt{{{x}^{2}}-1}}+\dfrac{{{x}^{2}}+1}{4{{x}^{\dfrac{3}{2}}}\sqrt{{{x}^{2}}-1}}+\dfrac{-1}{{{\left( {{x}^{2}}-1 \right)}^{\dfrac{3}{2}}}} \right)\times {{e}^{\sqrt{x}}}.
Hence, the second derivative of y=exx21y={{e}^{\sqrt{x}}}\sqrt{{{x}^{2}}-1}is(x214x+x2x21+x2+14x32x21+1(x21)32)×ex\left( \dfrac{\sqrt{{{x}^{2}}-1}}{4x}+\dfrac{\sqrt{x}}{2\sqrt{{{x}^{2}}-1}}+\dfrac{{{x}^{2}}+1}{4{{x}^{\dfrac{3}{2}}}\sqrt{{{x}^{2}}-1}}+\dfrac{-1}{{{\left( {{x}^{2}}-1 \right)}^{\dfrac{3}{2}}}} \right)\times {{e}^{\sqrt{x}}}.
Note: It is necessary to use the chain rule of differentiation for composition of two functions. Otherwise, we won’t be able to find the second derivative of the given function. Also, one must know that the first derivative of any function is the slope of the function.