Solveeit Logo

Question

Question: Find the second derivative of the following function. \[y=x\arcsin x\]...

Find the second derivative of the following function. y=xarcsinxy=x\arcsin x

Explanation

Solution

- Hint: One must know that arcsinx=sin1x\arcsin x={{\sin }^{-1}}x.Use product rule of two functions to differentiate the given function twice. Also use the fact that differentiation of y=arcsinxy=\arcsin x is dydx=11x2\dfrac{dy}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}} and differentiation of y=axn+by=a{{x}^{n}}+b is dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.

Complete step-by-step solution -

To find the second derivative of the function y=xarcsinxy=x\arcsin x, we will differentiate it twice with respect to the variable x.
To find the first derivative, we will differentiate the function y with respect to x.
We will use the product rule of differentiation of product of two functions which states that ddxf(x)=ddx(g(x)×h(x))=g(x)×ddxh(x)+h(x)ddxg(x)\dfrac{d}{dx}f(x)=\dfrac{d}{dx}\left( g(x)\times h(x) \right)=g(x)\times \dfrac{d}{dx}h(x)+h(x)\dfrac{d}{dx}g(x).
Substituting g(x)=x,h(x)=arcsinxg(x)=x,h(x)=\arcsin x in the above equation, we have df(x)dx=ddx(xarcsinx)=x×ddx(arcsinx)+arcsinx×ddx(x).....(1)\dfrac{df(x)}{dx}=\dfrac{d}{dx}(x\arcsin x)=x\times \dfrac{d}{dx}(\arcsin x)+\arcsin x\times \dfrac{d}{dx}(x).....\left( 1 \right) .
We know that differentiation of any function of the form y=axn+by=a{{x}^{n}}+b is dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Substituting a=1,n=1,b=0a=1,n=1,b=0 in the above equation, we have ddxg(x)=ddx(x)=1.....(2)\dfrac{d}{dx}g(x)=\dfrac{d}{dx}(x)=1.....\left( 2 \right).
We know that differentiation of any function of the form y=arcsinxy=\arcsin x is ddxh(x)=ddx(arcsinx)=11x2.....(3)\dfrac{d}{dx}h(x)=\dfrac{d}{dx}(\arcsin x)=\dfrac{1}{\sqrt{1-{{x}^{2}}}}.....\left( 3 \right).
Substituting the value of equation (2) and (3) in equation (1), we get df(x)dx=x×ddx(arcsinx)+arcsinx×ddx(x)=x×11x2+arcsinx=x1x2+arcsinx.....(4)\dfrac{df(x)}{dx}=x\times \dfrac{d}{dx}(\arcsin x)+\arcsin x\times \dfrac{d}{dx}(x)=x\times \dfrac{1}{\sqrt{1-{{x}^{2}}}}+\arcsin x=\dfrac{x}{\sqrt{1-{{x}^{2}}}}+\arcsin x.....\left( 4 \right).
Thus, we have dydx=x1x2+arcsinx\dfrac{dy}{dx}=\dfrac{x}{\sqrt{1-{{x}^{2}}}}+\arcsin x as the first derivative of the given function.
Now, to find the second derivative, we will again differentiate the function dydx\dfrac{dy}{dx} as d2ydx2=ddx(dydx)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right).
Let’s assume a(x)=dydx=x1x2+arcsinxa(x)=\dfrac{dy}{dx}=\dfrac{x}{\sqrt{1-{{x}^{2}}}}+\arcsin x.
So, we have d2ydx2=ddxa(x)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}a(x).
We can write a(x)a(x) as a sum of two functions a(x)=u(x)+v(x)a(x)=u(x)+v(x).
We know that the sum rule for differentiation of two functions is such that if y=a(x)=u(x)+v(x)y=a(x)=u(x)+v(x) then dydx=ddxa(x)=ddxu(x)+ddxv(x)\dfrac{dy}{dx}=\dfrac{d}{dx}a(x)=\dfrac{d}{dx}u(x)+\dfrac{d}{dx}v(x).
Substituting u(x)=x1x2,v(x)=arcsinxu(x)=\dfrac{x}{\sqrt{1-{{x}^{2}}}},v(x)=\arcsin x in the above equation, we have dydx=ddxa(x)=ddx(x1x2)+ddx(arcsinx).....(5)\dfrac{dy}{dx}=\dfrac{d}{dx}a(x)=\dfrac{d}{dx}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)+\dfrac{d}{dx}(\arcsin x).....\left( 5 \right).
To find the value of ddxu(x)\dfrac{d}{dx}u(x), we will use quotient rule of differentiation which states that if y=α(x)β(x)y=\dfrac{\alpha (x)}{\beta (x)} then, we have dydx=β(x)α(x)α(x)β(x)β2(x)\dfrac{dy}{dx}=\dfrac{\beta (x)\alpha '(x)-\alpha (x)\beta '(x)}{{{\beta }^{2}}(x)}.
Substituting α(x)=x,β(x)=1x2\alpha (x)=x,\beta (x)=\sqrt{1-{{x}^{2}}} in the above equation, we get ddxu(x)=1x2×ddx(x)x×ddx(1x2)(1x2)2.....(6)\dfrac{d}{dx}u(x)=\dfrac{\sqrt{1-{{x}^{2}}}\times \dfrac{d}{dx}(x)-x\times \dfrac{d}{dx}(\sqrt{1-{{x}^{2}}})}{{{\left( \sqrt{1-{{x}^{2}}} \right)}^{2}}}.....\left( 6 \right).
Let’s assume t(x)=1x2t(x)=\sqrt{1-{{x}^{2}}}.
We can write t(x)t(x) as a composition of two functions such that t(x)=w(z(x))t(x)=w(z(x)) where w(x)=x,z(x)=1x2w(x)=\sqrt{x,}z(x)=1-{{x}^{2}}.
We will use chain rule of differentiation of composition of two functions to find the derivative which states that if y is a composition of two functions w(x)w(x) and z(x)z(x) such that y=w(z(x))y=w(z(x)), then dydx=dw(z(x))dz(x)×dz(x)dx\dfrac{dy}{dx}=\dfrac{dw(z(x))}{dz(x)}\times \dfrac{dz(x)}{dx}.
Substituting w(x)=x,z(x)=1x2w(x)=\sqrt{x,}z(x)=1-{{x}^{2}} in the above equation, we get dydx=ddxt(x)=dw(z(x))dz(x)×ddxz(x)=d(1x2)d(1x2)×ddx(1x2).....(7)\dfrac{dy}{dx}=\dfrac{d}{dx}t(x)=\dfrac{dw(z(x))}{dz(x)}\times \dfrac{d}{dx}z(x)=\dfrac{d(\sqrt{1-{{x}^{2}}})}{d(1-{{x}^{2}})}\times \dfrac{d}{dx}(1-{{x}^{2}}).....\left( 7 \right).
We know that differentiation of any function of the form y=axn+by=a{{x}^{n}}+b is dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Substituting a=1,n=2,b=1a=-1,n=2,b=1 in the above equation, we get ddx(1x2)=2x.....(8)\dfrac{d}{dx}(1-{{x}^{2}})=-2x.....\left( 8 \right).
To find the value of d(1x2)d(1x2)\dfrac{d(\sqrt{1-{{x}^{2}}})}{d(1-{{x}^{2}})}, let’s assume γ=1x2\gamma =1-{{x}^{2}}.
Thus, we have d(1x2)d(1x2)=ddγ(γ)\dfrac{d(\sqrt{1-{{x}^{2}}})}{d(1-{{x}^{2}})}=\dfrac{d}{d\gamma }(\sqrt{\gamma }).
We know that differentiation of any function of the form y=axn+by=a{{x}^{n}}+b is dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Substituting a=1,n=12,b=0a=1,n=\dfrac{1}{2},b=0 in the above equation, we have ddγ(γ)=12γ\dfrac{d}{d\gamma }(\sqrt{\gamma })=\dfrac{1}{2\sqrt{\gamma }}.
So, we have d(1x2)d(1x2)=ddγ(γ)=12γ=121x2.....(9)\dfrac{d(\sqrt{1-{{x}^{2}}})}{d(1-{{x}^{2}})}=\dfrac{d}{d\gamma }(\sqrt{\gamma })=\dfrac{1}{2\sqrt{\gamma }}=\dfrac{1}{2\sqrt{1-{{x}^{2}}}}.....\left( 9 \right).
Substituting equation (8) and (9) in equation (7), we get dydx=ddxt(x)=d(1x2)d(1x2)×ddx(1x2)=121x2×(2x)=x1x2.....(10)\dfrac{dy}{dx}=\dfrac{d}{dx}t(x)=\dfrac{d(\sqrt{1-{{x}^{2}}})}{d(1-{{x}^{2}})}\times \dfrac{d}{dx}(1-{{x}^{2}})=\dfrac{1}{2\sqrt{1-{{x}^{2}}}}\times (-2x)=\dfrac{-x}{\sqrt{1-{{x}^{2}}}}.....\left( 10 \right).
Substituting equation (2) and (10) in equation (6), we get ddxu(x)=1x2×ddx(x)x×ddx(1x2)(1x2)2=1x2×1x×(x1x2)1x2\dfrac{d}{dx}u(x)=\dfrac{\sqrt{1-{{x}^{2}}}\times \dfrac{d}{dx}(x)-x\times \dfrac{d}{dx}(\sqrt{1-{{x}^{2}}})}{{{\left( \sqrt{1-{{x}^{2}}} \right)}^{2}}}=\dfrac{\sqrt{1-{{x}^{2}}}\times 1-x\times \left( \dfrac{-x}{\sqrt{1-{{x}^{2}}}} \right)}{1-{{x}^{2}}}.
Solving the above equation by taking LCM, we have ddxu(x)=1x2×1x×(x1x2)1x2=(1x2)+x2(1x2)32=1(1x2)32=(1x2)32.....(11)\dfrac{d}{dx}u(x)=\dfrac{\sqrt{1-{{x}^{2}}}\times 1-x\times \left( \dfrac{-x}{\sqrt{1-{{x}^{2}}}} \right)}{1-{{x}^{2}}}=\dfrac{(1-{{x}^{2}})+{{x}^{2}}}{{{(1-{{x}^{2}})}^{\dfrac{3}{2}}}}=\dfrac{1}{{{(1-{{x}^{2}})}^{\dfrac{3}{2}}}}={{(1-{{x}^{2}})}^{\dfrac{-3}{2}}}.....\left( 11 \right).
Substituting equation (3) and (11) in equation (5) and solving by taking LCM, we have ddxa(x)=ddx(x1x2)+ddx(arcsinx)=(1x2)32+11x2=1+(1x2)(1x2)32=2x2(1x2)32\dfrac{d}{dx}a(x)=\dfrac{d}{dx}\left( \dfrac{x}{\sqrt{1-{{x}^{2}}}} \right)+\dfrac{d}{dx}(\arcsin x)={{(1-{{x}^{2}})}^{\dfrac{-3}{2}}}+\dfrac{1}{\sqrt{1-{{x}^{2}}}}=\dfrac{1+(1-{{x}^{2}})}{{{(1-{{x}^{2}})}^{\dfrac{3}{2}}}}=\dfrac{2-{{x}^{2}}}{{{(1-{{x}^{2}})}^{\dfrac{3}{2}}}}.
Hence, the second derivative of y=xarcsinxy=x\arcsin x is 2x2(1x2)32\dfrac{2-{{x}^{2}}}{{{(1-{{x}^{2}})}^{\dfrac{3}{2}}}}.

Note: It is necessary to use the chain rule of differentiation for composition of two functions. Otherwise, we won’t be able to find the second derivative of the given function. Also, one must know that the first derivative of any function signifies the slope of the function.