Solveeit Logo

Question

Question: Find the second derivative of function \[\log x\]....

Find the second derivative of function logx\log x.

Explanation

Solution

Hint: To find the derivative of a function we should know what the first principle of the derivative is and how to apply it. First principle of derivative states that, f(x)=limh0f(x+h)f(x)x+hx{{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{x+h-x}. For logx\log x, keep in mind that you will require the expansion of log(1+x)\log \left( 1+x \right) which is log(1+x)=xx22+x33x44+.....\log \left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+......With help of these concepts we try to solve the question.

Complete step by step answer:
In this question, we have to find the second derivative of logx\log x, for that, we should know what is the first derivative of the function logx\log x. To find that, we will apply first principle of derivatives, which states that, f(x)=limh0f(x+h)f(x)x+hx{{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{x+h-x}.
We have been given that f(x)=logxf\left( x \right)=\log x, which means,
f(x)=limh0log(x+h)log(x)x+hx......(i){{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\log \left( x+h \right)-\log \left( x \right)}{x+h-x}......\left( i \right)
We know that, logalogb=log(ab)\log a-\log b=\log \left( \dfrac{a}{b} \right). Therefore, we can write equation (i) can be written as,
f(x)=limh0log(x+hx)x+hx{{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\log \left( \dfrac{x+h}{x} \right)}{x+h-x}, which can be written as
f(x)=limh0log(1+hx)x+hx......(ii)\Rightarrow {{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+\dfrac{h}{x} \right)}{x+h-x}......\left( ii \right)
As we know the expansion of log(1+x)\log \left( 1+x \right), which is log(1+x)=xx22+x33x44+.....\log \left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+....., we are using this value in equation (ii), we will get,
f(x)=limh0(hx)(hx)22+(hx)33(hx)44+.....x+hx{{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\left( \dfrac{h}{x} \right)-\dfrac{{{\left( \dfrac{h}{x} \right)}^{2}}}{2}+\dfrac{{{\left( \dfrac{h}{x} \right)}^{3}}}{3}-\dfrac{{{\left( \dfrac{h}{x} \right)}^{4}}}{4}+.....}{x+h-x}
Now, we will take (hx)\left( \dfrac{h}{x} \right) common from numerator, so we will get,
f(x)=limh0(hx)1(hx)12+(hx)23(hx)34+.....h{{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{h}{x} \right)\dfrac{1-\dfrac{{{\left( \dfrac{h}{x} \right)}^{1}}}{2}+\dfrac{{{\left( \dfrac{h}{x} \right)}^{2}}}{3}-\dfrac{{{\left( \dfrac{h}{x} \right)}^{3}}}{4}+.....}{h}
In this, we can see that ‘h’ can be cancelled out from numerator and denominator, so we will get,
f(x)=limh01(hx)12+(hx)23(hx)34+.....x{{f}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1-\dfrac{{{\left( \dfrac{h}{x} \right)}^{1}}}{2}+\dfrac{{{\left( \dfrac{h}{x} \right)}^{2}}}{3}-\dfrac{{{\left( \dfrac{h}{x} \right)}^{3}}}{4}+.....}{x}
Now, we are putting the limits, so we will get,
f(x)=1(0x)12+(0x)23(0x)34+.....x{{f}^{'}}\left( x \right)=\dfrac{1-\dfrac{{{\left( \dfrac{0}{x} \right)}^{1}}}{2}+\dfrac{{{\left( \dfrac{0}{x} \right)}^{2}}}{3}-\dfrac{{{\left( \dfrac{0}{x} \right)}^{3}}}{4}+.....}{x}
f(x)=10x\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{1-0}{x}
f(x)=1x\Rightarrow {{f}^{'}}\left( x \right)=\dfrac{1}{x}
Now, we can say that the first derivative of logx\log x is 1x\dfrac{1}{x}.
Now, to find the second derivative, we will apply the first principle of derivatives on 1x\dfrac{1}{x}, as it is the first derivative of logx\log x.
Let us consider, g(x)=1xg\left( x \right)=\dfrac{1}{x}. Therefore, we can say that, g(x)=limh01x+h1xx+hx{{g}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{x+h}-\dfrac{1}{x}}{x+h-x}
Now, we will simplify above equation further, so we get,
g(x)=limh01x+h1xh\Rightarrow {{g}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{x+h}-\dfrac{1}{x}}{h}
g(x)=limh0xxh(x+h)(x)h\Rightarrow {{g}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{x-x-h}{\left( x+h \right)\left( x \right)}}{h}
g(x)=limh0h(x+h)(x)h\Rightarrow {{g}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{-h}{\left( x+h \right)\left( x \right)}}{h}
g(x)=limh0hh(x+h)(x)\Rightarrow {{g}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-h}{h\left( x+h \right)\left( x \right)}
g(x)=limh01(x+h)(x)\Rightarrow {{g}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{\left( x+h \right)\left( x \right)}
Now, we are putting limits, so we get,
g(x)=limh01(x+0)(x)\Rightarrow {{g}^{'}}\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{\left( x+0 \right)\left( x \right)}
g(x)=1(x)(x)\Rightarrow {{g}^{'}}\left( x \right)=\dfrac{-1}{\left( x \right)\left( x \right)}
g(x)=1(x)2\Rightarrow {{g}^{'}}\left( x \right)=\dfrac{-1}{{{\left( x \right)}^{2}}}
f(x)=1(x)2\Rightarrow {{f}^{''}}\left( x \right)=\dfrac{-1}{{{\left( x \right)}^{2}}}
Therefore, we can say that the second derivative of logx\log x is 1(x)2\dfrac{-1}{{{\left( x \right)}^{2}}}.

Note: In this question, the most important thing to remember is the expansion of log(1+x)\log \left( 1+x \right), which is log(1+x)=xx22+x33x44+.....\log \left( 1+x \right)=x-\dfrac{{{x}^{2}}}{2}+\dfrac{{{x}^{3}}}{3}-\dfrac{{{x}^{4}}}{4}+....., because if we will not apply this expansion our first derivative will become zero and so as second derivative which is wrong. Also, we can use a shortcut method for finding the second derivative of logx\log x, that is, by remembering its first derivative, which is, 1x\dfrac{1}{x}. Now, we can write this as x1{{x}^{-1}}and apply the formula of derivative of xn{{x}^{n}}, which is equal to nxn1n{{x}^{n-1}}. Therefore, we can write, ddx(1x)=x2\dfrac{d}{dx}\left( \dfrac{1}{x} \right)=-{{x}^{-2}}, which is as same as d2dx2(logx)=x2\dfrac{{{d}^{2}}}{d{{x}^{2}}}\left( \log x \right)=-{{x}^{-2}}.