Solveeit Logo

Question

Question: Find the second derivative at \(x= 0\) i.e., \[{{\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)}_{x=0...

Find the second derivative at x=0x= 0 i.e., (d2ydx2)x=0{{\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)}_{x=0}} of the following equation:
ey+xy=e{{e}^{y}}+xy=e

Explanation

Solution

Hint: Differentiate the given function twice using sum and product rule of differentiation and then evaluate the value of the second derivative at the given point.

Complete step-by-step answer:
We have the function of the form ey+xy=e{{e}^{y}}+xy=e.
Differentiating the given function with respect to xx on both sides, we get ddx(ey+xy)=ddx(e)\dfrac{d}{dx}\left({{e}^{y}}+xy \right)=\dfrac{d}{dx}(e).
We will use sum rule of differentiation of two functions which states that if y=f(x)+g(x)y=f\left( x \right)+g\left( x \right) then we have dydx=ddxf(x)+ddxg(x)\dfrac{dy}{dx}=\dfrac{d}{dx}f\left( x \right)+\dfrac{d}{dx}g\left( x \right).

Thus, we have ddx(ey+xy)=ddx(ey)+ddx(xy)=ddx(e).....(1)\dfrac{d}{dx}\left( {{e}^{y}}+xy \right)=\dfrac{d}{dx}\left( {{e}^{y}} \right)+\dfrac{d}{dx}\left( xy \right)=\dfrac{d}{dx}\left( e \right).....\left( 1 \right) .
We know that the derivative of a constant with respect to any variable is zero.
Thus, we have ddx(e)=0.....(2)\dfrac{d}{dx}(e)=0.....\left( 2 \right).
To evaluate the value of ddx(ey)\dfrac{d}{dx}\left( {{e}^{y}} \right), multiply and divide the equation by dydy.
Thus, we have ddx(ey)=ddy(ey)×dydx\dfrac{d}{dx}\left( {{e}^{y}} \right)=\dfrac{d}{dy}\left( {{e}^{y}} \right)\times \dfrac{dy}{dx}.
We know that derivative of function of the form y=exy={{e}^{x}} is dydx=ex\dfrac{dy}{dx}={{e}^{x}}.
So, we have ddx(ey)=ddy(ey)×dydx=eydydx.....(3)\dfrac{d}{dx}\left( {{e}^{y}} \right)=\dfrac{d}{dy}\left( {{e}^{y}} \right)\times \dfrac{dy}{dx}={{e}^{y}}\dfrac{dy}{dx}.....\left( 3 \right).
We know that the product rule of differentiation says that if y=f(x)g(x)y=f\left( x \right)g\left( x \right) then
we have dydx=f(x)ddxg(x)+g(x)ddxf(x)\dfrac{dy}{dx}=f\left( x \right)\dfrac{d}{dx}g\left( x \right)+g\left( x \right)\dfrac{d}{dx}f\left( x \right).
Thus, we have ddx(xy)=xdydx+yddx(x).....(4)\dfrac{d}{dx}\left( xy \right)=x\dfrac{dy}{dx}+y\dfrac{d}{dx}\left( x \right).....\left( 4\right).
We know that the derivative of function of the form y=axny=a{{x}^{n}} is dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
So, we have ddx(x)=1.....(5)\dfrac{d}{dx}\left( x \right)=1.....\left( 5 \right).
Substituting equation (5)\left( 5 \right) in equation (4)\left( 4 \right), we get ddx(xy)=xdydx+yddx(x)=xdydx+y.....(6)\dfrac{d}{dx}\left( xy\right)=x\dfrac{dy}{dx}+y\dfrac{d}{dx}\left( x \right)=x\dfrac{dy}{dx}+y.....\left( 6 \right).
Substituting equation (2),(3),(6)\left( 2 \right),\left( 3 \right),\left( 6 \right) in equation (1)\left( 1 \right),
we get eydydx+y+xdydx=0{{e}^{y}}\cdot \dfrac{dy}{dx}+y+x\cdot \dfrac{dy}{dx}=0.
Simplifying the above equation, we get dydx=yey+x.....(7)\dfrac{dy}{dx}=-\dfrac{y}{{{e}^{y}}+x}.....\left( 7 \right).
We will now differentiate the above equation to find the second derivative of the given function.
As we know d2ydx2=ddx(dydx)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right).
Thus, we have d2ydx2=ddx(yey+x)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( -\dfrac{y}{{{e}^{y}}+x} \right).
To find the above derivative, we will use quotient rule which says that if y=f(x)g(x)y=\dfrac{f\left( x \right)}{g\left( x \right)} then dydx=g(x)f(x)f(x)g(x)g2(x)\dfrac{dy}{dx}=\dfrac{g\left( x \right)f'\left( x \right)-f\left( x\right)g'\left( x \right)}{{{g}^{2}}\left( x \right)}.
Thus, we have d2ydx2=ddx(yey+x)=(ey+x)ddx(y)(y)ddx(ey+x)(ey+x)2.....(8)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( -\dfrac{y}{{{e}^{y}}+x} \right)=\dfrac{\left( {{e}^{y}}+x \right)\dfrac{d}{dx}\left( -y \right)-\left( -y \right)\dfrac{d}{dx}\left({{e}^{y}}+x \right)}{{{\left( {{e}^{y}}+x \right)}^{2}}}.....\left( 8 \right).

To evaluate the value of ddx(y)\dfrac{d}{dx}\left( -y \right), we will multiply and divide the equation by dydy.
Thus, we have ddx(y)=ddy(y)×dydx\dfrac{d}{dx}\left( -y \right)=\dfrac{d}{dy}\left( -y \right)\times \dfrac{dy}{dx}.
We have ddy(y)=1\dfrac{d}{dy}\left( -y \right)=-1 as we know that the derivative of function of the form y=axny=a{{x}^{n}} is dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Thus, we have ddx(y)=ddy(y)×dydx=dydx.....(9)\dfrac{d}{dx}\left( -y \right)=\dfrac{d}{dy}\left( -y \right)\times \dfrac{dy}{dx}=- \dfrac{dy}{dx}.....\left( 9 \right).
To evaluate the value of ddx(ey+x)\dfrac{d}{dx}\left( {{e}^{y}}+x \right), we will use sum rule of
differentiation.
Thus, we have ddx(ey+x)=ddx(ey)+ddx(x)\dfrac{d}{dx}\left( {{e}^{y}}+x \right)=\dfrac{d}{dx}\left( {{e}^{y}} \right)+\dfrac{d}{dx}\left( x \right)
Substituting equation (3),(5)\left( 3 \right),\left( 5 \right) in the above equation, we have

\right)={{e}^{y}}\dfrac{dy}{dx}+1.....\left( 10 \right)$$. Substituting equation $$\left( 9 \right),\left( 10 \right)$$ in equation $$\left( 8 \right)$$, we get $$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{e}^{y}}+x \right)\dfrac{d}{dx}\left( -y \right)-\left( -y \right)\dfrac{d}{dx}\left( {{e}^{y}}+x \right)}{{{\left( {{e}^{y}}+x \right)}^{2}}}=\dfrac{\left( {{e}^{y}}+x \right)\left( -\dfrac{dy}{dx} \right)+y\left( 1+{{e}^{y}}\dfrac{dy}{dx} \right)}{{{\left( {{e}^{y}}+x \right)}^{2}}}.....\left( 11 \right)$$ . Now, we will evaluate the values of functions at $$x=0$$. Substituting the value $$x=0$$ in the equation $${{e}^{y}}+xy=e$$, we have $${{e}^{y}}=e$$. $$\Rightarrow y=1$$ Substituting the value $$x=0$$ in the equation $$\left( 7 \right)$$ ,i.e., $$\dfrac{dy}{dx}=- \dfrac{y}{{{e}^{y}}+x}$$, we have $$\dfrac{dy}{dx}=\dfrac{-1}{e}$$. Substituting the value $$x=0$$ and $$\dfrac{dy}{dx}=\dfrac{-1}{e}$$ in the equation $$\left( 11 \right)$$,i.e.,$$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\left( {{e}^{y}}+x \right)\left( -\dfrac{dy}{dx} \right)+y\left( 1+{{e}^{y}}\dfrac{dy}{dx} \right)}{{{\left( {{e}^{y}}+x \right)}^{2}}}$$, we get $$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{e\left( \dfrac{1}{e} \right)+\left( 1+e\left( \dfrac{-1}{e} \right) \right)}{{{\left( e \right)}^{2}}}$$ Thus, we have $$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{1}{{{e}^{2}}}$$ at $$x=0$$. Note: We need to observe that we can’t substitute the values and then find the derivative. We need to find the derivative first and then substitute the values. This is an implicit function which is expressed in terms of both dependent and independent variables. To differentiate an implicit function, we differentiate both sides of an equation by treating one of the variables as a function of the other one.