Solveeit Logo

Question

Question: Find the roots of the following quadratic equations, if they exist, by the method of completing the ...

Find the roots of the following quadratic equations, if they exist, by the method of completing the square :
(i). 2x27x+3=02{{x}^{2}}-7x+3=0
(ii). 2x2+x4=02{{x}^{2}}+x-4=0
(iii). 4x2+43x+3=04{{x}^{2}}+4\sqrt{3}x+3=0
(iv). 2x2+x+4=02{{x}^{2}}+x+4=0

Explanation

Solution

We check the existence of roots of quadratic equation ax2+bx+c=0a{{x}^{2}}+bx+c=0 by checking whether the discriminant D=b24ac0D={{b}^{2}}-4ac\ge 0. We use the competing square method first dividing the equation both side by aa and then adding (b2a)2{{\left( \dfrac{-b}{2a} \right)}^{2}} both side. We then try to make a whole square in the left hand side using the identity (a±b)2=a2+b2±2ab{{\left( a\pm b \right)}^{2}}={{a}^{2}}+{{b}^{2}}\pm 2ab$$$$

Complete step-by-step solution:
We know that the quadratic equation in one variable xx is given by ax2+bx+c=0a{{x}^{2}}+bx+c=0 where a0,b,ca\ne 0,b,c are real numbers. The roots for the quadratic equation exists when the discriminant D=b24ac0D={{b}^{2}}-4ac\ge 0. So let us check whether the given equation has a real root and the use of completing square method to solve. We solve by the completing square method first dividing the equation by $a$ and then add ${{\left( \dfrac{-b}{2a} \right)}^{2}}$ both side of the equation to get a complete square at the left side.
(i) the given quadratic equation is 2x27x+3=02{{x}^{2}}-7x+3=0. Here the discriminant is D=(7)24.2.3=4924=25>0D={{\left( -7 \right)}^{2}}-4.2.3=49-24=25>0. So roots exist. We first divide the terms in both side of the given equation by 2 and then add (72×2)2=(74)2{{\left( \dfrac{-7}{2\times 2} \right)}^{2}}={{\left( \dfrac{7}{4} \right)}^{2}} both to get

& 2{{x}^{2}}-7x+3=0 \\\ & \Rightarrow {{x}^{2}}-\dfrac{7}{2}x+\dfrac{3}{2}=0 \\\ & \Rightarrow {{x}^{2}}-\dfrac{7}{2}x+\dfrac{3}{2}+{{\left( \dfrac{7}{4} \right)}^{2}}={{\left( \dfrac{7}{4} \right)}^{2}} \\\ & \Rightarrow {{\left( x \right)}^{2}}-2\times x\times \dfrac{7}{4}+{{\left( \dfrac{7}{4} \right)}^{2}}+\dfrac{3}{2}={{\left( \dfrac{7}{4} \right)}^{2}} \\\ \end{aligned} $$ Let us use the algebraic identity of ${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$ and proceed $$\begin{aligned} & \Rightarrow {{\left( x \right)}^{2}}-2\times x\times \dfrac{7}{4}+{{\left( \dfrac{7}{4} \right)}^{2}}+\dfrac{3}{2}={{\left( \dfrac{7}{4} \right)}^{2}} \\\ & \Rightarrow {{\left( x-\dfrac{7}{4} \right)}^{2}}={{\left( \dfrac{7}{4} \right)}^{2}}-\dfrac{3}{2}=\dfrac{25}{16} \\\ \end{aligned}$$ We take the square root both side and get, $$\begin{aligned} & \Rightarrow x-\dfrac{7}{4}=\pm \dfrac{5}{4} \\\ & \Rightarrow x=\dfrac{5}{4}+\dfrac{7}{4},x=\dfrac{-5}{4}+\dfrac{7}{4} \\\ & \Rightarrow x=3,x=\dfrac{1}{2} \\\ \end{aligned}$$ (ii) The given quadratic equation is $2{{x}^{2}}+x-4=0$. Here the discriminant is $D={{\left( 1 \right)}^{2}}-4.2.\left( -4 \right)=33>0$. So roots exist. We first divide the terms in both side of the given equation by 2 and then add ${{\left( \dfrac{-1}{2\times 2} \right)}^{2}}={{\left( \dfrac{1}{4} \right)}^{2}}$ both to get $$\begin{aligned} & 2{{x}^{2}}+x-4=0 \\\ & \Rightarrow {{x}^{2}}+\dfrac{1}{2}x-2=0 \\\ & \Rightarrow {{x}^{2}}+\dfrac{1}{2}x-2+{{\left( \dfrac{1}{4} \right)}^{2}}={{\left( \dfrac{1}{4} \right)}^{2}} \\\ & \Rightarrow {{\left( x \right)}^{2}}+2\times x\times \dfrac{1}{4}+{{\left( \dfrac{1}{4} \right)}^{2}}-2={{\left( \dfrac{1}{4} \right)}^{2}} \\\ \end{aligned} $$ Let us use the algebraic identity of ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ and proceed $$\begin{aligned} & \Rightarrow {{\left( x \right)}^{2}}-2\times x\times \dfrac{1}{4}+{{\left( \dfrac{1}{4} \right)}^{2}}-2={{\left( \dfrac{1}{4} \right)}^{2}} \\\ & \Rightarrow {{\left( x-\dfrac{1}{4} \right)}^{2}}={{\left( \dfrac{1}{4} \right)}^{2}}+2=\dfrac{33}{16} \\\ \end{aligned}$$ We take the square root both side and get, $$\begin{aligned} & \Rightarrow x+\dfrac{1}{4}=\pm \dfrac{\sqrt{33}}{4} \\\ & \Rightarrow x=\dfrac{\sqrt{33}}{4}-\dfrac{1}{4},x=\dfrac{-\sqrt{33}}{4}-\dfrac{1}{4} \\\ & \Rightarrow x=\dfrac{\sqrt{33}-1}{4}x=\dfrac{-\sqrt{33}-1}{4} \\\ \end{aligned}$$ (iii) The given quadratic equation is $4{{x}^{2}}+4\sqrt{3}x+3=0$. Here the discriminant is $D={{\left( 4\sqrt{3} \right)}^{2}}-4.4.3=0$. So roots exist. We first divide the terms in both side of the given equation by 4 and then add ${{\left( \dfrac{-4\sqrt{3}}{4\times 2} \right)}^{2}}={{\left( \dfrac{-\sqrt{3}}{2} \right)}^{2}}={{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}$ both to get $$\begin{aligned} & 4{{x}^{2}}+4\sqrt{3}x+3=0 \\\ & \Rightarrow {{x}^{2}}+{\sqrt{3}}x+\dfrac{3}{4}=0 \\\ & \Rightarrow {{x}^{2}}+{\sqrt{3}}x+\dfrac{3}{4}+{{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}={{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}} \\\ & \Rightarrow {{\left( x \right)}^{2}}+2\times x\times \dfrac{\sqrt{3}}{2}+{{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}+\dfrac{3}{4}={{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}} \\\ \end{aligned}$$ Let us use the algebraic identity of ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ and proceed $$\begin{aligned} & \Rightarrow {{\left( x+\dfrac{\sqrt{3}}{2} \right)}^{2}}+\dfrac{3}{4}={{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}} \\\ & \Rightarrow {{\left( x+\dfrac{\sqrt{3}}{2} \right)}^{2}}={{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}-\dfrac{3}{4}=0 \\\ \end{aligned}$$ We take the square root both side and get, $$ x=\dfrac{-\sqrt{3}}{2}$$ (iv) The given quadratic equation is $2{{x}^{2}}+x+4=0$. Here the discriminant is $D={{\left( 1 \right)}^{2}}-4.2.1=-7< 0$. So roots do not exist.$$$$ **Note:** We note that the roots equal when $D=0$ , the roots are rational when $D$ is a perfect square, the roots are integral when $D$ is a perfect square and $2a$ divides $D$ exactly. We can directly find the roots using the formula $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.