Solveeit Logo

Question

Question: Find the root of quadratic equation 6*x*x + x -15...

Find the root of quadratic equation 6xx + x -15

Answer

The roots of the quadratic equation are 32\frac{3}{2} and 53-\frac{5}{3}.

Explanation

Solution

To find the roots of the quadratic equation 6x2+x15=06x^2 + x - 15 = 0, we use the quadratic formula.

A quadratic equation of the form ax2+bx+c=0ax^2 + bx + c = 0 has roots given by:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

In the given equation, 6x2+x15=06x^2 + x - 15 = 0:

a=6a = 6 b=1b = 1 c=15c = -15

Substitute these values into the quadratic formula:

x=(1)±(1)24(6)(15)2(6)x = \frac{-(1) \pm \sqrt{(1)^2 - 4(6)(-15)}}{2(6)} x=1±1(360)12x = \frac{-1 \pm \sqrt{1 - (-360)}}{12} x=1±1+36012x = \frac{-1 \pm \sqrt{1 + 360}}{12} x=1±36112x = \frac{-1 \pm \sqrt{361}}{12}

Since 361=19\sqrt{361} = 19:

x=1±1912x = \frac{-1 \pm 19}{12}

This gives two possible roots:

  1. x1=1+1912=1812=32x_1 = \frac{-1 + 19}{12} = \frac{18}{12} = \frac{3}{2}
  2. x2=11912=2012=53x_2 = \frac{-1 - 19}{12} = \frac{-20}{12} = \frac{-5}{3}

The roots of the quadratic equation 6x2+x15=06x^2 + x - 15 = 0 are x=32x = \frac{3}{2} and x=53x = -\frac{5}{3}.

Explanation:

Identify coefficients a=6a=6, b=1b=1, c=15c=-15. Apply the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. Calculate the discriminant 124(6)(15)=1+360=361=19\sqrt{1^2 - 4(6)(-15)} = \sqrt{1+360} = \sqrt{361} = 19. Substitute back to find roots: x=1±1912x = \frac{-1 \pm 19}{12}, yielding x=1812=32x = \frac{18}{12} = \frac{3}{2} and x=2012=53x = \frac{-20}{12} = -\frac{5}{3}.