Solveeit Logo

Question

Question: Find the right-hand derivative of \[f\left( x \right) = \left[ x \right]\sin \pi x\] at \[x = n\], w...

Find the right-hand derivative of f(x)=[x]sinπxf\left( x \right) = \left[ x \right]\sin \pi x at x=nx = n, where nIn \in I.

Explanation

Solution

Here in this question, we have to find the right hand derivative of given function.to solve this by using the formula of right hand derivative i.e., RHD=limxc+f(x)f(c)xcRHD = \mathop {\lim }\limits_{x \to {c^ + }} \dfrac{{f(x) - f(c)}}{{x - c}}, on substituting the function of x and c and on further simplification we get the required solution.

Complete step by step answer:
The idea of a limit is a basis of all calculus. The limit of a function is defined as let f(x)f(x)be a function defined on an interval that containsx=ax = a. Then we say thatlimxaf(x)=L\mathop {\lim }\limits_{x \to a} f(x) = L, if for every ε>0\varepsilon > 0there is some number δ>0\delta > 0such that f(x)L<ε\left| {f(x) - L} \right| < \varepsilon whenever0<xa<δ0 < \left| {x - a} \right| < \delta .
Consider the given function:
f(x)=[x]sinπx\Rightarrow \,\,f\left( x \right) = \left[ x \right]\sin \pi x ---------(1)
Now, we haver to find the right hand derivative.
i.e., RHD=limxc+f(x)f(c)xcRHD = \mathop {\lim }\limits_{x \to {c^ + }} \dfrac{{f(x) - f(c)}}{{x - c}}-------(2)
Here to examine the differentiability, take some substitution for limxc+f(x)\mathop {\lim }\limits_{x \to {c^ + }} f(x) put x=n+hx = n + h and change the limit as xn+x \to {n^ + }by h0h \to 0, then Equation (2) becomes
RHD=limh0f(n+h)f(n)h\Rightarrow \,\,RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(n + h) - f(n)}}{h}--------(3)
On substituting equation (2) in (3), then
RHD=limh0[n+h]sinπ(n+h)[n]sinπnh\Rightarrow \,\,RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left[ {n + h} \right]\sin \pi \left( {n + h} \right) - \left[ n \right]\sin \pi n}}{h}
RHD=limh0(n+h)sin(nπ+hπ)nsinπnh\Rightarrow \,\,RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {n + h} \right)\sin \left( {n\pi + h\pi } \right) - n\sin \pi n}}{h}
RHD=limh0(n+h)sin(nπ+hπ)nsinnπh\Rightarrow \,\,RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {n + h} \right)\sin \left( {n\pi + h\pi } \right) - n\sin n\pi }}{h}
Now use the sine addition identity: sin(A+B)=sinA cosB+cosAsinBsin\left( {A + B} \right) = sinA{\text{ }}cosB + cosA\,sinB applying in the above equation, then
RHD=limh0(n+h)(sin(nπ)cos(hπ)+cos(nπ)sin(hπ))nsinnπh\Rightarrow \,\,RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {n + h} \right)\left( {\sin \left( {n\pi } \right)\cos \left( {h\pi } \right) + \cos \left( {n\pi } \right)\sin \left( {h\pi } \right)} \right) - n\sin n\pi }}{h}
As we know the value of cosnπ=1\cos n\pi = 1 and sin(nπ)=0\sin \left( {n\pi } \right) = 0. On substituting, we get
RHD=limh0(n+h)(01+1sin(hπ))n.0h\Rightarrow \,\,RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {n + h} \right)\left( {0 \cdot 1 + \cdot 1\sin \left( {h\pi } \right)} \right) - n.0}}{h}
RHD=limh0(n+h)(0+sin(hπ))0h\Rightarrow \,\,RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {n + h} \right)\left( {0 + \sin \left( {h\pi } \right)} \right) - 0}}{h}
RHD=limh0(n+h)(sin(hπ))h\Rightarrow \,\,RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{(n + h)(\sin (h\pi ))}}{h}
RHD=limh0nsin(hπ)+hsin(hπ)h\Rightarrow \,\,RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{{n\sin (h\pi ) + h\sin (h\pi )}}{h}
On simplification, we get
RHD=limh0(nsin(hπ)h+hsin(hπ)h)\Rightarrow \,\,RHD = \mathop {\lim }\limits_{h \to 0} \left( {\dfrac{{n\sin (h\pi )}}{h} + \dfrac{{h\sin (h\pi )}}{h}} \right)
RHD=limh0nhsin(hπ)+limh0hhsin(hπ)\Rightarrow \,\,RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{n}{h}\sin (h\pi ) + \mathop {\lim }\limits_{h \to 0} \dfrac{h}{h}\sin (h\pi )
RHD=limh0nhsin(hπ)+limh0sin(hπ)\Rightarrow \,\,RHD = \mathop {\lim }\limits_{h \to 0} \dfrac{n}{h}\sin (h\pi ) + \mathop {\lim }\limits_{h \to 0} \sin (h\pi )
On applying limit, we get the first term in the form of 00\dfrac{0}{0} form so we apply the L’Hospitals rule to the first term.
RHD=nlimh0hcos(hπ)+limh0sin(hπ)\Rightarrow \,\,RHD = n\mathop {\lim }\limits_{h \to 0} h\,\cos (h\pi ) + \mathop {\lim }\limits_{h \to 0} \sin (h\pi )
Now when we apply the limit to the above function
RHD=n.0cos(0.π)+sin(0.π)\Rightarrow \,\,RHD = n.0\,\cos (0.\pi ) + \sin (0.\pi )
Hence on simplification we get
RHD=0\Rightarrow \,\,RHD = 0
Hence, the right hand derivative of the given function is 0.

Note: The problem is related to the limits we have to find the right hand limit. We must know the formula RHD=limxc+f(x)f(c)xcRHD = \mathop {\lim }\limits_{x \to {c^ + }} \dfrac{{f(x) - f(c)}}{{x - c}} and we have to consider the given function and then we apply the limit to it. Since the given function is a trigonometry function we must know about the standard formulas of trigonometry.