Solveeit Logo

Question

Question: Find the resultant amplitude of the following simple harmonic equations: $x_1 = 5\sin \omega t$ $x...

Find the resultant amplitude of the following simple harmonic equations:

x1=5sinωtx_1 = 5\sin \omega t

x2=5sin(ωt+53)x_2 = 5\sin(\omega t + 53^\circ)

x3=10cosωtx_3 = -10\cos \omega t

Answer

10

Explanation

Solution

To find the resultant amplitude of the given simple harmonic equations, we can use the method of phasor addition. Each simple harmonic motion (SHM) can be represented by a phasor, which is a vector rotating in a 2D plane with angular velocity ω\omega. The length of the phasor represents the amplitude of the SHM, and the angle it makes with a reference axis at t=0t=0 represents its initial phase.

The given equations are: x1=5sinωtx_1 = 5\sin \omega t x2=5sin(ωt+53)x_2 = 5\sin(\omega t + 53^\circ) x3=10cosωtx_3 = -10\cos \omega t

We can express each equation in the standard form Asin(ωt+ϕ)A\sin(\omega t + \phi).

  1. x1=5sinωtx_1 = 5\sin \omega t: This is already in the standard form with amplitude A1=5A_1 = 5 and initial phase ϕ1=0\phi_1 = 0^\circ.

  2. x2=5sin(ωt+53)x_2 = 5\sin(\omega t + 53^\circ): This is also in the standard form with amplitude A2=5A_2 = 5 and initial phase ϕ2=53\phi_2 = 53^\circ.

  3. x3=10cosωtx_3 = -10\cos \omega t: We need to convert cosωt-\cos \omega t into a sine function. We know that cosθ=sin(θ90)-\cos \theta = \sin(\theta - 90^\circ) or cosθ=sin(θ+270)-\cos \theta = \sin(\theta + 270^\circ). Using the phase 90-90^\circ: x3=10(cosωt)=10sin(ωt90)x_3 = 10(-\cos \omega t) = 10\sin(\omega t - 90^\circ). So, the amplitude is A3=10A_3 = 10 and the initial phase is ϕ3=90\phi_3 = -90^\circ.

Now we have three phasors with the following amplitudes and initial phases: Phasor 1: A1=5A_1 = 5, ϕ1=0\phi_1 = 0^\circ Phasor 2: A2=5A_2 = 5, ϕ2=53\phi_2 = 53^\circ Phasor 3: A3=10A_3 = 10, ϕ3=90\phi_3 = -90^\circ

The resultant displacement is the sum of the individual displacements: x=x1+x2+x3x = x_1 + x_2 + x_3. The resultant motion is also an SHM with the same angular frequency ω\omega, given by x=ARsin(ωt+ϕR)x = A_R\sin(\omega t + \phi_R), where ARA_R is the resultant amplitude and ϕR\phi_R is the resultant initial phase.

We can find the resultant amplitude by summing the phasors vectorially. Each phasor can be resolved into components along two perpendicular directions, for example, along the direction of sinωt\sin \omega t (x-axis) and cosωt\cos \omega t (y-axis). A displacement Asin(ωt+ϕ)A\sin(\omega t + \phi) can be written as A(sinωtcosϕ+cosωtsinϕ)=(Acosϕ)sinωt+(Asinϕ)cosωtA(\sin \omega t \cos \phi + \cos \omega t \sin \phi) = (A\cos \phi)\sin \omega t + (A\sin \phi)\cos \omega t. Let S=AcosϕS = A\cos \phi be the component along sinωt\sin \omega t and C=AsinϕC = A\sin \phi be the component along cosωt\cos \omega t.

For x1=5sinωtx_1 = 5\sin \omega t: A1=5A_1 = 5, ϕ1=0\phi_1 = 0^\circ. S1=A1cosϕ1=5cos0=5×1=5S_1 = A_1 \cos \phi_1 = 5 \cos 0^\circ = 5 \times 1 = 5. C1=A1sinϕ1=5sin0=5×0=0C_1 = A_1 \sin \phi_1 = 5 \sin 0^\circ = 5 \times 0 = 0.

For x2=5sin(ωt+53)x_2 = 5\sin(\omega t + 53^\circ): A2=5A_2 = 5, ϕ2=53\phi_2 = 53^\circ. We use the approximate values for sin530.8\sin 53^\circ \approx 0.8 and cos530.6\cos 53^\circ \approx 0.6 (corresponding to a 3-4-5 right triangle). S2=A2cosϕ2=5cos535×0.6=3S_2 = A_2 \cos \phi_2 = 5 \cos 53^\circ \approx 5 \times 0.6 = 3. C2=A2sinϕ2=5sin535×0.8=4C_2 = A_2 \sin \phi_2 = 5 \sin 53^\circ \approx 5 \times 0.8 = 4.

For x3=10sin(ωt90)x_3 = 10\sin(\omega t - 90^\circ): A3=10A_3 = 10, ϕ3=90\phi_3 = -90^\circ. S3=A3cosϕ3=10cos(90)=10×0=0S_3 = A_3 \cos \phi_3 = 10 \cos(-90^\circ) = 10 \times 0 = 0. C3=A3sinϕ3=10sin(90)=10×(1)=10C_3 = A_3 \sin \phi_3 = 10 \sin(-90^\circ) = 10 \times (-1) = -10.

The resultant displacement is x=(S1+S2+S3)sinωt+(C1+C2+C3)cosωtx = (S_1 + S_2 + S_3)\sin \omega t + (C_1 + C_2 + C_3)\cos \omega t. Let the resultant components be SR=S1+S2+S3S_R = S_1 + S_2 + S_3 and CR=C1+C2+C3C_R = C_1 + C_2 + C_3. SR=5+3+0=8S_R = 5 + 3 + 0 = 8. CR=0+4+(10)=6C_R = 0 + 4 + (-10) = -6.

The resultant displacement is x=8sinωt6cosωtx = 8\sin \omega t - 6\cos \omega t. This is in the form x=SRsinωt+CRcosωtx = S_R \sin \omega t + C_R \cos \omega t. The resultant amplitude ARA_R is given by SR2+CR2\sqrt{S_R^2 + C_R^2}. AR=82+(6)2=64+36=100=10A_R = \sqrt{8^2 + (-6)^2} = \sqrt{64 + 36} = \sqrt{100} = 10.

Alternatively, using complex numbers: The complex amplitude for Asin(ωt+ϕ)A\sin(\omega t + \phi) is Aeiϕ=A(cosϕ+isinϕ)A e^{i\phi} = A(\cos \phi + i\sin \phi). Z1=5ei0=5(cos0+isin0)=5(1+0i)=5Z_1 = 5 e^{i0^\circ} = 5(\cos 0^\circ + i\sin 0^\circ) = 5(1 + 0i) = 5. Z2=5ei53=5(cos53+isin53)5(0.6+i0.8)=3+4iZ_2 = 5 e^{i53^\circ} = 5(\cos 53^\circ + i\sin 53^\circ) \approx 5(0.6 + i0.8) = 3 + 4i. Z3=10ei(90)=10(cos(90)+isin(90))=10(0i1)=10iZ_3 = 10 e^{i(-90^\circ)} = 10(\cos(-90^\circ) + i\sin(-90^\circ)) = 10(0 - i1) = -10i.

The resultant complex amplitude is ZR=Z1+Z2+Z3Z_R = Z_1 + Z_2 + Z_3. ZR=5+(3+4i)+(10i)=(5+3)+(4i10i)=86iZ_R = 5 + (3 + 4i) + (-10i) = (5 + 3) + (4i - 10i) = 8 - 6i.

The resultant amplitude ARA_R is the magnitude of the resultant complex amplitude ZRZ_R. AR=ZR=86i=82+(6)2=64+36=100=10A_R = |Z_R| = |8 - 6i| = \sqrt{8^2 + (-6)^2} = \sqrt{64 + 36} = \sqrt{100} = 10.

Both methods yield the same resultant amplitude.

Explanation of the solution: The given SHMs are represented as phasors. The resultant displacement is the sum of the individual displacements. This sum corresponds to the vector sum of the individual phasors. We convert all SHM equations to the standard form Asin(ωt+ϕ)A\sin(\omega t + \phi). The phasor for Asin(ωt+ϕ)A\sin(\omega t + \phi) is a vector of length AA at an angle ϕ\phi with respect to the reference axis. We resolve each phasor into components along the sinωt\sin \omega t and cosωt\cos \omega t directions (or equivalent perpendicular axes). Summing the components gives the components of the resultant phasor. The magnitude of the resultant phasor is the resultant amplitude, calculated using the Pythagorean theorem on the resultant components. Alternatively, using complex numbers, the resultant complex amplitude is the sum of individual complex amplitudes AeiϕA e^{i\phi}. The magnitude of the resultant complex amplitude is the resultant amplitude. Both methods give the resultant amplitude as 10.