Solveeit Logo

Question

Question: Find the remainder when \({\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}\)is ...

Find the remainder when (32)(32)(32){\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}is divided by 77.

Explanation

Solution

Hint: Write 32 as 25{2^5} and then 2 as (3-1). Solve the expression in power first, using binomial expansion and then proceed.

We know that 32 can be written as 25{2^5}.
So, (32)32{\left( {32} \right)^{32}} can be simplified as:
(32)32=(25)32=(2)160=(31)160\Rightarrow {\left( {32} \right)^{32}} = {\left( {{2^5}} \right)^{32}} = {\left( 2 \right)^{160}} = {\left( {3 - 1} \right)^{160}}
Now, we will expand (31)160{\left( {3 - 1} \right)^{160}} using binomial expansion:

(31)160=160C0(3)160160C1(3)159+.....160C159(3)1+160C160(3)0, (31)160=3[160C0(3)159160C1(3)158+.....160C159(3)0]+1,  \Rightarrow {\left( {3 - 1} \right)^{160}}{ = ^{160}}{C_0}{\left( 3 \right)^{160}}{ - ^{160}}{C_1}{\left( 3 \right)^{159}} + .....{ - ^{160}}{C_{159}}{\left( 3 \right)^1}{ + ^{160}}{C_{160}}{\left( 3 \right)^0}, \\\ \Rightarrow {\left( {3 - 1} \right)^{160}} = 3\left[ {^{160}{C_0}{{\left( 3 \right)}^{159}}{ - ^{160}}{C_1}{{\left( 3 \right)}^{158}} + .....{ - ^{160}}{C_{159}}{{\left( 3 \right)}^0}} \right] + 1, \\\

(31)160=3k+1 \Rightarrow {\left( {3 - 1} \right)^{160}} = 3k + 1 where kNk \in N
Now, (32)(32)(32){\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} can be simplified as:

(32)(32)(32)=(32)(3k+1) (32)(32)(32)=(25)(3k+1), (32)(32)(32)=2(15k+5), (32)(32)(32)=23(5k+1)×22, (32)(32)(32)=4×8(5k+1), (32)(32)(32)=4(7+1)5k+1  \Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {\left( {32} \right)^{\left( {3k + 1} \right)}} \\\ \Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {\left( {{2^5}} \right)^{\left( {3k + 1} \right)}}, \\\ \Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {2^{\left( {15k + 5} \right)}}, \\\ \Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = {2^{3\left( {5k + 1} \right)}} \times {2^2}, \\\ \Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4 \times {8^{\left( {5k + 1} \right)}}, \\\ \Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4{\left( {7 + 1} \right)^{5k + 1}} \\\

For (7+1)5k+1{\left( {7 + 1} \right)^{5k + 1}} we’ll again use binomial expansion:

(32)(32)(32)=4[5k+1C075k+1+5k+1C175k+.....+5k+1C5k71+1], (32)(32)(32)=4[7n+1],  \Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4\left[ {^{5k + 1}{C_0}{7^{5k + 1}}{ + ^{5k + 1}}{C_1}{7^{5k}} + .....{ + ^{5k + 1}}{C_{5k}}{7^1} + 1} \right], \\\ \Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 4\left[ {7n + 1} \right], \\\

(32)(32)(32)=28n+4 \Rightarrow {\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}} = 28n + 4 where nNn \in N
We know that 28n28n will always be a multiple of 7. Therefore if we divide 28n+428n + 4 by 7, we will get 4 as the remainder.
Therefore when (32)(32)(32){\left( {32} \right)^{{{\left( {32} \right)}^{\left( {32} \right)}}}}is divided by 7, the remainder is 4.

Note: Whenever we have to find the remainder when some number (let it be DD) is divided by another number (let it be dd), we try to convert DD in the form of dd:
D=dn+k\Rightarrow D = dn + k
So, kk comes out as a remainder.