Solveeit Logo

Question

Question: Find the remainder when \({3^{91}}\)is divided by 80. (A) 3 (B) 1 (C) 80 (D) 27...

Find the remainder when 391{3^{91}}is divided by 80.
(A) 3 (B) 1 (C) 80 (D) 27

Explanation

Solution

Hint: Convert 391{3^{91}} in the form of 34k+d{3^{4k + d}} and then put 34=81=(80+1){3^4} = 81 = \left( {80 + 1} \right) and use binomial expansion.

Complete step by step answer:
According to the question, we have to find the remainder when 391{3^{91}} is divided by 80.
We can write 391{3^{91}} as:
391=388+3 399=388×33 399=27×34×22 399=27×(34)22 399=27×(81)22 399=27×(80+1)22  \Rightarrow {3^{91}} = {3^{88 + 3}} \\\ \Rightarrow {3^{99}} = {3^{88}} \times {3^3} \\\ \Rightarrow {3^{99}} = 27 \times {3^{4 \times 22}} \\\ \Rightarrow {3^{99}} = 27 \times {\left( {{3^4}} \right)^{22}} \\\ \Rightarrow {3^{99}} = 27 \times {\left( {81} \right)^{22}} \\\ \Rightarrow {3^{99}} = 27 \times {\left( {80 + 1} \right)^{22}} \\\
Now, for (80+1)22{\left( {80 + 1} \right)^{22}}, we can use binomial expansion. By doing this we’ll get:

399=27×(22C08022+22C18021+.....+22C1801+22C22800) 399=27(22C08022+22C18021+.....+22C1801+1) 399=27(22C08022+22C18021+.....+22C1801)+27 399=27×80(22C08021+22C18020+.....+22C1800)+27  \Rightarrow {3^{99}} = 27 \times \left( {^{22}{C_0}{{80}^{22}}{ + ^{22}}{C_1}{{80}^{21}} + .....{ + ^{22}}{C_1}{{80}^1}{ + ^{22}}{C_{22}}{{80}^0}} \right) \\\ \Rightarrow {3^{99}} = 27\left( {^{22}{C_0}{{80}^{22}}{ + ^{22}}{C_1}{{80}^{21}} + .....{ + ^{22}}{C_1}{{80}^1} + 1} \right) \\\ \Rightarrow {3^{99}} = 27\left( {^{22}{C_0}{{80}^{22}}{ + ^{22}}{C_1}{{80}^{21}} + .....{ + ^{22}}{C_1}{{80}^1}} \right) + 27 \\\ \Rightarrow {3^{99}} = 27 \times 80\left( {^{22}{C_0}{{80}^{21}}{ + ^{22}}{C_1}{{80}^{20}} + .....{ + ^{22}}{C_1}{{80}^0}} \right) + 27 \\\

Now, 27×80(22C08021+22C18020+.....+22C1800)27 \times 80\left( {^{22}{C_0}{{80}^{21}}{ + ^{22}}{C_1}{{80}^{20}} + .....{ + ^{22}}{C_1}{{80}^0}} \right) is a multiple of 80. So it can be written as 80n80n. So, we have:
399=80n+27\Rightarrow {3^{99}} = 80n + 27

Thus we can say that when 391{3^{91}}is divided by 80, it gives remainder 27. Last option is correct.

Note: If we have to find the remainder when a number (let it be D) is divided by another number (let it be d), we try to convert D as D=dn+kD = dn + k in which case k comes out as our remainder.