Solveeit Logo

Question

Question: Find the real values of \(\theta \) for which \(\left( \dfrac{1+i\cos \theta }{1-2i\cos \theta } \ri...

Find the real values of θ\theta for which (1+icosθ12icosθ)\left( \dfrac{1+i\cos \theta }{1-2i\cos \theta } \right) is purely real.

Explanation

Solution

At first, we rationalise the denominator by (1+icosθ)(1+2icosθ)(12icosθ)(1+2icosθ)\dfrac{\left( 1+i\cos \theta \right)\left( 1+2i\cos \theta \right)}{\left( 1-2i\cos \theta \right)\left( 1+2i\cos \theta \right)} . Then, we simplify the expression to 12cos2θ+3icosθ1+4cos2θ\dfrac{1-2{{\cos }^{2}}\theta +3i\cos \theta }{1+4{{\cos }^{2}}\theta } . After that, we separate the real and imaginary parts as 12cos2θ1+4cos2θ+3icosθ1+4cos2θ\dfrac{1-2{{\cos }^{2}}\theta }{1+4{{\cos }^{2}}\theta }+\dfrac{3i\cos \theta }{1+4{{\cos }^{2}}\theta } . Then, we equate the imaginary part to zero and get cosθ=0\cos \theta =0 which gives the real values of θ\theta .

Complete step by step solution:
The expression that we are given in this problem is,
(1+icosθ12icosθ)\left( \dfrac{1+i\cos \theta }{1-2i\cos \theta } \right)
We need to simplify this expression in order to arrive at a conclusion. We can simplify it by rationalising it. We rationalise a fraction, say x+yab\dfrac{x+y}{a-b} by multiplying a+ba+b in the numerator and the denominator as in (x+y)(a+b)(ab)(a+b)\dfrac{\left( x+y \right)\left( a+b \right)}{\left( a-b \right)\left( a+b \right)} . Then, doing so with the given fraction, we get,
(1+icosθ12icosθ)=(1+icosθ)(1+2icosθ)(12icosθ)(1+2icosθ)\Rightarrow \left( \dfrac{1+i\cos \theta }{1-2i\cos \theta } \right)=\dfrac{\left( 1+i\cos \theta \right)\left( 1+2i\cos \theta \right)}{\left( 1-2i\cos \theta \right)\left( 1+2i\cos \theta \right)}
Simplifying the multiplication, we get,
(1+icosθ12icosθ)=1+2icosθ+icosθ+(2icosθ×icosθ)1(2icosθ)2\Rightarrow \left( \dfrac{1+i\cos \theta }{1-2i\cos \theta } \right)=\dfrac{1+2i\cos \theta +i\cos \theta +\left( 2i\cos \theta \times i\cos \theta \right)}{1-{{\left( 2i\cos \theta \right)}^{2}}}
We know that i2=1{{i}^{2}}=-1 . This gives,
(1+icosθ12icosθ)=1+3icosθ+2(1)cos2θ14(1)cos2θ\Rightarrow \left( \dfrac{1+i\cos \theta }{1-2i\cos \theta } \right)=\dfrac{1+3i\cos \theta +2\left( -1 \right){{\cos }^{2}}\theta }{1-4\left( -1 \right){{\cos }^{2}}\theta }
Further simplifying, we get,
(1+icosθ12icosθ)=12cos2θ+3icosθ1+4cos2θ\Rightarrow \left( \dfrac{1+i\cos \theta }{1-2i\cos \theta } \right)=\dfrac{1-2{{\cos }^{2}}\theta +3i\cos \theta }{1+4{{\cos }^{2}}\theta }
Separating the real and the imaginary parts, we get,
(1+icosθ12icosθ)=12cos2θ1+4cos2θ+3icosθ1+4cos2θ\Rightarrow \left( \dfrac{1+i\cos \theta }{1-2i\cos \theta } \right)=\dfrac{1-2{{\cos }^{2}}\theta }{1+4{{\cos }^{2}}\theta }+\dfrac{3i\cos \theta }{1+4{{\cos }^{2}}\theta }
Now, any expression with an ii multiplied to it is an imaginary expression. In the above operation, the term 3cosθ3\cos \theta had ii multiplied with it, so we separated it. So, in order to make the expression purely real, the imaginary part should vanish, or in other words should be zero. This means that, if we equate the expression multiplied with ii to zero, we get the condition for the entire expression to be purely real. So,
3cosθ1+4cos2θ=0 3cosθ=0 cosθ=0 \begin{aligned} & \Rightarrow \dfrac{3\cos \theta }{1+4{{\cos }^{2}}\theta }=0 \\\ & \Rightarrow 3\cos \theta =0 \\\ & \Rightarrow \cos \theta =0 \\\ \end{aligned}
Now, cosθ\cos \theta is zero for π2,3π2,5π2,...\dfrac{\pi }{2},\dfrac{3\pi }{2},\dfrac{5\pi }{2},... . So, for θ=nπ2\theta =\dfrac{n\pi }{2} where, n=1,3,5,...n=1,3,5,... cosθ\cos \theta is zero.
Thus, we can conclude that the real values of θ\theta for which (1+icosθ12icosθ)\left( \dfrac{1+i\cos \theta }{1-2i\cos \theta } \right) is purely real are θ=nπ2\theta =\dfrac{n\pi }{2} where, n=1,3,5,...n=1,3,5,....

Note: We should remember to write the general expression for θ\theta and not just simply π2\dfrac{\pi }{2} . Also, we can solve this problem in another way. But this special method will be applicable only for this problem. If we can eliminate all the imaginary terms in the expression (1+icosθ12icosθ)\left( \dfrac{1+i\cos \theta }{1-2i\cos \theta } \right) , we get the answer. This can be done by equating cosθ\cos \theta to zero, which is what we have done.