Solveeit Logo

Question

Question: Find the real solution of \({{\tan }^{-1}}\sqrt{x\left( x+1 \right)}+{{\sin }^{-1}}\sqrt{{{x}^{2}}+x...

Find the real solution of tan1x(x+1)+sin1x2+x+1=π2{{\tan }^{-1}}\sqrt{x\left( x+1 \right)}+{{\sin }^{-1}}\sqrt{{{x}^{2}}+x+1}=\dfrac{\pi }{2}.

Explanation

Solution

For this problem we need to calculate the real solution of the given equation. For this we are going to use the inverse trigonometric formulas. First, we will consider the value tan1x(x+1){{\tan }^{-1}}\sqrt{x\left( x+1 \right)} and assume it to be θ\theta and calculate the value of tanθ\tan \theta . From the value of tanθ\tan \theta we will construct a triangle and find the value of θ\theta in terms of cos1{{\cos }^{-1}}. Now we will substitute this value as tan1x(x+1){{\tan }^{-1}}\sqrt{x\left( x+1 \right)} in the given equation. Here we can use the inverse trigonometric formula which is sin1θ+cos1θ=π2{{\sin }^{-1}}\theta +{{\cos }^{-1}}\theta =\dfrac{\pi }{2}. From this we can equate the values which are in trigonometric ratios and simplify them to get the required result.

Complete step by step solution:
Given equation tan1x(x+1)+sin1x2+x+1=π2{{\tan }^{-1}}\sqrt{x\left( x+1 \right)}+{{\sin }^{-1}}\sqrt{{{x}^{2}}+x+1}=\dfrac{\pi }{2}.
Considering the value tan1x(x+1){{\tan }^{-1}}\sqrt{x\left( x+1 \right)}.
Let tan1x(x+1)=θ{{\tan }^{-1}}\sqrt{x\left( x+1 \right)}=\theta
Applying tan\tan function on both sides of the above equation, then we will get
tanθ=tan(tan1(x(x+1)))\tan \theta =\tan \left( {{\tan }^{-1}}\left( \sqrt{x\left( x+1 \right)} \right) \right)
The functions tan\tan and tan1{{\tan }^{-1}} are get cancelled to each other, then the above equation is modified as
tanθ=x(x+1)\tan \theta =\sqrt{x\left( x+1 \right)}
We have the definition of the tanθ\tan \theta as Opposite side to θAdjacent side to θ\dfrac{\text{Opposite side to }\theta }{\text{Adjacent side to }\theta }. So, we can construct a triangle as

From Pythagoras theorem we can write the value of hypotenuse as
hyp=12+(x(x+1))2 hyp=1+x2+x hyp=x2+x+1 \begin{aligned} & hyp=\sqrt{{{1}^{2}}+{{\left( \sqrt{x\left( x+1 \right)} \right)}^{2}}} \\\ & \Rightarrow hyp=\sqrt{1+{{x}^{2}}+x} \\\ & \Rightarrow hyp=\sqrt{{{x}^{2}}+x+1} \\\ \end{aligned}
Now the value of cosθ\cos \theta will be
cosθ=Adjacent side to θHypotenuse cosθ=1x2+x+1 \begin{aligned} & \cos \theta =\dfrac{\text{Adjacent side to }\theta }{\text{Hypotenuse}} \\\ & \Rightarrow \cos \theta =\dfrac{1}{\sqrt{{{x}^{2}}+x+1}} \\\ \end{aligned}
From the above equation the value of θ\theta will be
θ=cos1(1x2+x+1)\theta ={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{{{x}^{2}}+x+1}} \right)
Bur we have assumed that tan1x(x+1)=θ{{\tan }^{-1}}\sqrt{x\left( x+1 \right)}=\theta . From both these values, we can write
tan1x(x+1)=cos1(1x2+x+1){{\tan }^{-1}}\sqrt{x\left( x+1 \right)}={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{{{x}^{2}}+x+1}} \right)
Substituting this value in the given equation tan1x(x+1)+sin1x2+x+1=π2{{\tan }^{-1}}\sqrt{x\left( x+1 \right)}+{{\sin }^{-1}}\sqrt{{{x}^{2}}+x+1}=\dfrac{\pi }{2}, then we will get
cos1(1x2+x+1)+sin1(x2+x+1)=π2{{\cos }^{-1}}\left( \dfrac{1}{\sqrt{{{x}^{2}}+x+1}} \right)+{{\sin }^{-1}}\left( \sqrt{{{x}^{2}}+x+1} \right)=\dfrac{\pi }{2}
We have the inverse trigonometric formula which is sin1θ+cos1θ=π2{{\sin }^{-1}}\theta +{{\cos }^{-1}}\theta =\dfrac{\pi }{2}. By considering this formula, from the above equation we can write
1x2+x+1=x2+x+1\dfrac{1}{\sqrt{{{x}^{2}}+x+1}}=\sqrt{{{x}^{2}}+x+1}
Simplifying the above equation by cross multiplication, then we will have
x2+x+1=1{{x}^{2}}+x+1=1
Subtracting 11 on both sides and taking xx as common from the terms x2+x{{x}^{2}}+x, then the above equation is modified as
x(x+1)+11=11 x(x+1)=0 \begin{aligned} & x\left( x+1 \right)+1-1=1-1 \\\ & \Rightarrow x\left( x+1 \right)=0 \\\ \end{aligned}
Equating each term individually, then we will get
x=0 or x+1=0 x=0 or x=1 \begin{aligned} & x=0\text{ or }x+1=0 \\\ & \Rightarrow x=0\text{ or }x=-1 \\\ \end{aligned}
Hence the real solution for the given equation tan1x(x+1)+sin1x2+x+1=π2{{\tan }^{-1}}\sqrt{x\left( x+1 \right)}+{{\sin }^{-1}}\sqrt{{{x}^{2}}+x+1}=\dfrac{\pi }{2} is x=0,1x=0,-1.

Note: For this problem we can also consider the term sin1(x2+x+1){{\sin }^{-1}}\left( \sqrt{{{x}^{2}}+x+1} \right) and convert it into cot1{{\cot }^{-1}} by constructing a triangle and applying some basic trigonometric definitions and Pythagoras theorem. After that substitute the converted value in the given equation and use the inverse trigonometric formula tan1x+cot1x=π2{{\tan }^{-1}}x+{{\cot }^{-1}}x=\dfrac{\pi }{2} and follow the above procedure to calculate the required result.