Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

Find the real numbers x and y if (x-iy) (3+5i) is the conjugate of -6-24i.

Answer

Letz=(xiy)(3+5i)Let z=(x-iy)(3+5i)

z=3x+5xi3yi5yi2=3x+5xi3yi+5y=(3x+5y)+i(5x3y)z=3x+5xi-3yi-5yi^2=3x+5xi-3yi+5y=(3x+5y)+i(5x-3y)

zˉ=(3x+5y)i(5x3y)=624i∴\bar{z}=(3x+5y)-i(5x-3y)=-6-24i

Equating real and imaginary parts, we obtain

3x+5y=-6….(i)

5x-3y=24……(ii)

Multiplying equation (i) by 3 and equation (ii) by 5 and then adding them, we obtain

9x+15y=189x+15y=-18

25x15y=12034x=102\frac{25x-15y=120}{34x=102}

x=10234=3∴ x=\frac{102}{34}=3

Putting the value of x in equation (i), we obtain

3(3)+5y=63(3)+5y=-6

5y=69=15⇒5y=-6-9=-15

y=3⇒y=-3

Thus, the values of x and y are 3 and -3 respectively.