Solveeit Logo

Question

Question: Find the range of values of x for which \(\dfrac{{x - 3}}{4} - x < \dfrac{{x - 1}}{2} - \dfrac{{x - ...

Find the range of values of x for which x34x<x12x23\dfrac{{x - 3}}{4} - x < \dfrac{{x - 1}}{2} - \dfrac{{x - 2}}{3} and 2x>2x82 - x > 2x - 8.

A. (1,103) B. (1,103) C. R  {\text{A}}{\text{. }}\left( { - 1,\dfrac{{10}}{3}} \right) \\\ {\text{B}}{\text{. }}\left( {1,\dfrac{{10}}{3}} \right) \\\ {\text{C}}{\text{. }}R \\\

D.{\text{D}}{\text{.}} None of these

Explanation

Solution

Hint- Here, we will be proceeding by simplifying the given inequalities (in variable x) in such a way that we get the range of values of x from each of these inequalities and then combining these values of x (i.e., by taking intersection) in order to find the final range of values of x.

Given, first inequality is x34x<x12x23 (1)\dfrac{{x - 3}}{4} - x < \dfrac{{x - 1}}{2} - \dfrac{{x - 2}}{3}{\text{ }} \to {\text{(1)}}
This inequality can be simplified as under
x34x4<3(x1)2(x2)6 33x4<3x32x+46 33x4<x+16 (2)  \Rightarrow \dfrac{{x - 3 - 4x}}{4} < \dfrac{{3\left( {x - 1} \right) - 2\left( {x - 2} \right)}}{6} \\\ \Rightarrow \dfrac{{ - 3 - 3x}}{4} < \dfrac{{3x - 3 - 2x + 4}}{6} \\\ \Rightarrow \dfrac{{ - 3 - 3x}}{4} < \dfrac{{x + 1}}{6}{\text{ }} \to {\text{(2)}} \\\
By applying cross multiplication in inequality (2), we get

6(33x)<4(x+1) 1818x<4x+4 184<4x+18x 22<22x 2222<x 1<x x>1 (3)  \Rightarrow 6\left( { - 3 - 3x} \right) < 4\left( {x + 1} \right) \\\ \Rightarrow - 18 - 18x < 4x + 4 \\\ \Rightarrow - 18 - 4 < 4x + 18x \\\ \Rightarrow - 22 < 22x \\\ \Rightarrow \dfrac{{ - 22}}{{22}} < x \\\ \Rightarrow - 1 < x \\\ \Rightarrow x > - 1{\text{ }} \to {\text{(3)}} \\\

So, after simplification inequality (1) reduces to inequality (3).
Also, given the second inequality as 2x>2x8 (4)2 - x > 2x - 8{\text{ }} \to {\text{(4)}}
This inequality can be simplified as under
2+8>2x+x 10>3x 103>x x<103 (5)  \Rightarrow 2 + 8 > 2x + x \\\ \Rightarrow 10 > 3x \\\ \Rightarrow \dfrac{{10}}{3} > x \\\ \Rightarrow x < \dfrac{{10}}{3}{\text{ }} \to {\text{(5)}} \\\
So, after simplification inequality (4) reduces to inequality (5).
The final range of values of x which satisfy both the given inequalities is obtained by taking the intersection between the inequalities (3) and (5).
Intersection of x>1x > - 1 and x<103 x < \dfrac{{10}}{3}{\text{ }}gives 1<x<103  - 1 < x < \dfrac{{10}}{3}{\text{ }} which means required value of x lies between -1 and 103\dfrac{{10}}{3}.
i.e.,x(1,103)x \in \left( { - 1,\dfrac{{10}}{3}} \right)
Hence, option A is correct.

Note- In this particular problem, we obtained the final range of values of x by simply taking the intersection of the range of values of x given by inequalities (3) and (5) because for the final range of values of x both the given inequalities should satisfy. So, we will take the range of values of x which are common to both the range of values of x given by inequalities (3) and (5).