Question
Question: Find the range of values of t for which \[\]\[2\sin t = \dfrac{{1 - 2x + 5{x^2}}}{{3{x^2} - 2x - 1}}...
Find the range of values of t for which $$$$$$2\sin t = \dfrac{{1 - 2x + 5{x^2}}}{{3{x^2} - 2x - 1}},t \in \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$$
Solution
For this type of questions first take the given quadratic expression is equal to some constant say y that is taking sint as y and make it as a single equation then find the discriminant value and solve .
Complete step-by-step answer:
The objective of the problem is to solve the range of values of t for which 2sint=3x2−2x−11−2x+5x2 where t∈[−2π,2π]
First ,taking the right hand side quadratic expression as some constant term say it y
That is , y=3x2−2x−11−2x+5x2.....(1)
For this quadratic expression the denominator should not be zero .
Now taking the denominator to the right side in equation (1)
⇒ y\left( {3{x^2} - 2x - 1} \right) = 1 - 2x + 5{x^2}$$$$$$
$\Rightarrow$ 3{x^2}y - 2xy - y = 1 - 2x + 5{x^2}
Sending the terms to the left hand side of above equation ,we get
$\Rightarrow$3{x^2}y - 2xy - y - 1 + 2x - 5{x^2} = 0Takingcommontermsof{x^2},xterms ,we get
$\Rightarrow$\left( {3y - 5} \right){x^2} - 2\left( {y - 1} \right)x - \left( {y + 1} \right) = 0Inthisexpressionxisreal.Sincexisrealitshouldhaverealroots,thatisitsdiscriminatevalueshouldbegreaterthanorequaltozero.ThatisD \geqslant 0,D = {b^2} - 4ac \geqslant 0Wherea = 3y - 5,b = - 2\left( {y - 1} \right),c = - \left( {y + 1} \right)Now,{\left( { - 2\left( {y - 1} \right)} \right)^2} - 4\left( {3y - 5} \right)\left( { - \left( {y + 1} \right)} \right) \geqslant 0
On computing the above equation we get
$\Rightarrow$4{\left( {y - 1} \right)^2} + 4\left( {3y - 5} \right)\left( {y + 1} \right) \geqslant 0
On expanding the terms we get
$\Rightarrow$4\left( {{y^2} - 2y + 1} \right) + 4\left( {3{y^2} + 3y - 5y - 5} \right) \geqslant 0
Taking four as common we get
$\Rightarrow$\left( {{y^2} - 2y + 1} \right) + \left( {3{y^2} - 2y - 5} \right) \geqslant 0$$
Solving the above equation we get
\Rightarrow y = \dfrac{{1 \pm \sqrt {1 + 4} }}{2} \\
\Rightarrow y = \dfrac{{1 \pm \sqrt 5 }}{2} \\