Question
Mathematics Question on Inverse Trigonometric Functions
Find the range of the function f:[0,1]→R,f(x)=x3−x2+4x+2sin−1x ?
A
[−(π+2),0]
B
[0,4+π]
C
[2,3]
D
(0,2+π]
Answer
[0,4+π]
Explanation
Solution
We have f:[0,1]→R f(x)=x3−x2+4x+2sin−1x Now f′(x)=3x2−2x+4+1−x22 For x[0,1],f′(x)>0 Hence, it is a increasing function at x=0,f(0)=0−0+4(0)+2sin−1(0)=0 at x=1,f(1)=1−1+4(1)+2sin−1(1)
=4+2(2π)=4+π
∴ Range of f(x)[0,4+π]