Solveeit Logo

Question

Mathematics Question on Inverse Trigonometric Functions

Find the range of the function f:[0,1]R,f(x)=x3x2+4x+2sin1xf:[0,\,1]\to R,\,\,f(x)={{x}^{3}}-{{x}^{2}}+4x+2{{\sin }^{-1}}x ?

A

[(π+2),0][-(\pi +2),\,0]

B

[0,4+π][0,4+\pi ]

C

[2,3][2,3]

D

(0,2+π](0,\,2+\pi ]

Answer

[0,4+π][0,4+\pi ]

Explanation

Solution

We have f:[0,1]Rf:[0,\,1]\to R f(x)=x3x2+4x+2sin1xf(x)={{x}^{3}}-{{x}^{2}}+4x+2{{\sin }^{-1}}x Now f(x)=3x22x+4+21x2f'(x)=3{{x}^{2}}-2x+4+\frac{2}{\sqrt{1-{{x}^{2}}}} For x[0,1],f(x)>0x\,[0,\,\,1],\,\,\,f'\,(x)>0 Hence, it is a increasing function at x=0,f(0)=00+4(0)+2sin1(0)=0x=0,\,f(0)=0-0+4(0)+2si{{n}^{-1}}(0)=0 at x=1,f(1)=11+4(1)+2sin1(1)x=1,f(1)=1-1+4(1)+2{{\sin }^{-1}}(1)
=4+2(π2)=4+π=4+2\left( \frac{\pi }{2} \right)=4+\pi
\therefore Range of f(x)[0,4+π]f(x)\,[0,\,4+\pi ]