Question
Question: Find the range of real number α for which the equation\[z + \alpha |z - 1| + 2i = 0\], \[z = x + iy\...
Find the range of real number α for which the equationz+α∣z−1∣+2i=0, z=x+iy has a solution. Find the solution.
A. x=25,y=−2
B. x=−2,y=25
C. x=−25,y=2
D.x=2,y=−25
Solution
Use z=x+iy,∣z∣=x2+y2to find solution of the equation.
Complete step by step answer:
(1) Given equation is
z+α∣z−1∣+2i=0
Here, z=x+iy
(2) x+iy+α∣(x+iy)−1∣+2i=0
x+iy+α∣(x−1)+(iy)∣+2i=0
(3) Using mode property
x+iy+α(x−1)2+(y)2+2i=0
Now we will shift the value ofα(x−1)2+(y)2to the right side,
(4) x+(y+2)i=−α(x−1)2+y2
Squaring both sides, we will get
x+(y+2)i2=α2[(x−1)2+y2]2
x2+(y+2)2+2x(y+2)i=α2[(x−1)2+y2]
⇒ Equating real and imaginary part from both sides
Imaginary part:
Real part, x2+(y+2)2=α2∣(x−1)2+y2∣
Taking y=−2 in the real part for complex number, we get
x2+(−2+2)2=α2[(x−1)2+4]
Using algebraic identity: (a−b)2=a2+b2−2ab, we will get
⇒x2+0=α2(x2+1−2x+4)
⇒(x2−2x+1+4)=α2x2
⇒x2−2x+5=α2x2
$$$$$$ \Rightarrow {x^2} - 2x + 5 - \dfrac{{{x^2}}}{{{\alpha ^2}}} = 0 \Rightarrow {x^2}\left( {1 - \dfrac{1}{{{\alpha ^2}}}} \right) - 2x + 5 = 0Forrealx,D \geqslant 0{b^2} - 4ac \geqslant 0 \Rightarrow 4 - 4\left( {1 - \dfrac{1}{{{\alpha ^2}}}} \right)5 \geqslant 0 \Rightarrow 4 - 20\left( {1 - \dfrac{1}{{{\alpha ^2}}}} \right) \geqslant 0 \Rightarrow 4 - 20 + \dfrac{{20}}{{{\alpha ^2}}} \geqslant 0 \Rightarrow - 16 + \dfrac{{20}}{{{\alpha ^2}}} \geqslant 0 \Rightarrow \dfrac{{20}}{{{\alpha ^2}}} \geqslant 16 \Rightarrow 16{\alpha ^2} < 20 \Rightarrow {\alpha ^2} < \dfrac{{20}}{{16}} = \dfrac{5}{4} \Rightarrow {\alpha ^2}\alpha \dfrac{5}{4}\therefore \alpha \in \left( {\sqrt {\dfrac{{ - 5}}{4}} ,\sqrt {\dfrac{5}{4}} } \right)Or\left( { - \dfrac{{\sqrt 5 }}{2},\dfrac{{ + \sqrt 5 }}{2}} \right)(5)Hence,rangeofrealαis\left( {\dfrac{{ - \sqrt 5 }}{2},\dfrac{{\sqrt 5 }}{2}} \right)(6)Therefore,therequiredsolutionofthex = \dfrac{5}{2},,,y = - 2$$
Note: The range of a function is the set of outputs. The function achieves when it is applied to its whole set of outputs. A function relates an input to an output. The range is the set of objects that actually come out of the machine when you feed it with all the inputs.