Solveeit Logo

Question

Question: Find the range of real number α for which the equation\[z + \alpha |z - 1| + 2i = 0\], \[z = x + iy\...

Find the range of real number α for which the equationz+αz1+2i=0z + \alpha |z - 1| + 2i = 0, z=x+iyz = x + iy has a solution. Find the solution.
A. x=52,y=2x = \dfrac{5}{2},\,y = - 2
B. x=2,y=52x = - 2,\,y = \dfrac{5}{2}
C. x=52,y=2x = - \dfrac{5}{2},y = 2
D.x=2,y=52x = 2,\,y = - \dfrac{5}{2}

Explanation

Solution

Use z=x+iy,z=x2+y2z = x + iy,\,\,|z| = \sqrt {{x^2} + {y^2}} to find solution of the equation.

Complete step by step answer:
(1) Given equation is
z+αz1+2i=0z + \alpha |z - 1| + 2i = 0
Here, z=x+iyz = x + iy
(2) x+iy+α(x+iy)1+2i=0x + iy + \alpha |(x + iy) - 1| + 2i = 0
x+iy+α(x1)+(iy)+2i=0x + iy + \alpha |(x - 1) + (iy)| + 2i = 0
(3) Using mode property
x+iy+α(x1)2+(y)2+2i=0x + iy + \alpha \sqrt {{{(x - 1)}^2} + {{(y)}^2}} + 2i = 0
Now we will shift the value ofα(x1)2+(y)2\alpha \sqrt {{{(x - 1)}^2} + {{(y)}^2}} to the right side,
(4) x+(y+2)i=α(x1)2+y2x + (y + 2)i = - \alpha \sqrt {{{(x - 1)}^2} + {y^2}}
Squaring both sides, we will get
x+(y+2)i2=α2[(x1)2+y2]2{\\{ x + (y + 2)i\\} ^2} = {\alpha ^2}{\left[ {\sqrt {{{(x - 1)}^2} + {y^2}} } \right]^2}
x2+(y+2)2+2x(y+2)i=α2[(x1)2+y2]{x^2} + {(y + 2)^2} + 2x(y + 2)i = {\alpha ^2}\left[ {{{(x - 1)}^2} + {y^2}} \right]
\Rightarrow Equating real and imaginary part from both sides
Imaginary part:

2x(y+2)=0 x=0,y=2  2x(y + 2) = 0 \\\ \Rightarrow x = 0,\,\,y = - 2 \\\

Real part, x2+(y+2)2=α2(x1)2+y2{x^2} + {(y + 2)^2} = {\alpha ^2}|{(x - 1)^2} + {y^2}|
Taking y=2y = - 2 in the real part for complex number, we get
x2+(2+2)2=α2[(x1)2+4]{x^2} + {( - 2 + 2)^2} = {\alpha ^2}\left[ {{{(x - 1)}^2} + 4} \right]
Using algebraic identity: (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab, we will get
x2+0=α2(x2+12x+4)\Rightarrow {x^2} + 0 = {\alpha ^2}({x^2} + 1 - 2x + 4)
(x22x+1+4)=x2α2\Rightarrow ({x^2} - 2x + 1 + 4) = \dfrac{{{x^2}}}{{{\alpha ^2}}}
x22x+5=x2α2\Rightarrow {x^2} - 2x + 5 = \dfrac{{{x^2}}}{{{\alpha ^2}}}
$$$$$$ \Rightarrow {x^2} - 2x + 5 - \dfrac{{{x^2}}}{{{\alpha ^2}}} = 0 \Rightarrow {x^2}\left( {1 - \dfrac{1}{{{\alpha ^2}}}} \right) - 2x + 5 = 0Forreal For realx,D \geqslant 0 {b^2} - 4ac \geqslant 0 \Rightarrow 4 - 4\left( {1 - \dfrac{1}{{{\alpha ^2}}}} \right)5 \geqslant 0 \Rightarrow 4 - 20\left( {1 - \dfrac{1}{{{\alpha ^2}}}} \right) \geqslant 0 \Rightarrow 4 - 20 + \dfrac{{20}}{{{\alpha ^2}}} \geqslant 0 \Rightarrow - 16 + \dfrac{{20}}{{{\alpha ^2}}} \geqslant 0 \Rightarrow \dfrac{{20}}{{{\alpha ^2}}} \geqslant 16 \Rightarrow 16{\alpha ^2} < 20 \Rightarrow {\alpha ^2} < \dfrac{{20}}{{16}} = \dfrac{5}{4} \Rightarrow {\alpha ^2}\alpha \dfrac{5}{4} \therefore \alpha \in \left( {\sqrt {\dfrac{{ - 5}}{4}} ,\sqrt {\dfrac{5}{4}} } \right)Or Or\left( { - \dfrac{{\sqrt 5 }}{2},\dfrac{{ + \sqrt 5 }}{2}} \right)(5)Hence,rangeofrealαis (5) Hence, range of real α is\left( {\dfrac{{ - \sqrt 5 }}{2},\dfrac{{\sqrt 5 }}{2}} \right)(6)Therefore,therequiredsolutionofthe (6) Therefore, the required solution of thex = \dfrac{5}{2},,,y = - 2$$

Note: The range of a function is the set of outputs. The function achieves when it is applied to its whole set of outputs. A function relates an input to an output. The range is the set of objects that actually come out of the machine when you feed it with all the inputs.