Solveeit Logo

Question

Question: Find the range of \( 13\cos x + 3\sqrt 3 \sin x - 4 \)...

Find the range of 13cosx+33sinx413\cos x + 3\sqrt 3 \sin x - 4

Explanation

Solution

Observe that132+(33)2=142{13^2} + {(3\sqrt 3 )^2} = {14^2}.
Multiply and divide the given function by 14 to get a point on the unit circle. Also, use the fact: For every point P(x,y)P(x,y)on the unit circlex2+y2=1{x^2} + {y^2} = 1there exists θ[0,2π)\theta \in [0,2\pi )such thatx=cosθx = \cos \theta and y=sinθy = \sin \theta.
Simplify the function to get an expression without sinx\sin xusing the trigonometric identity cos(AB)=cosAcosBsinAsinB\cos (A - B) = \cos A\cos B - \sin A\sin B. Finally, use the range of cosθ\cos \theta : 1cos(xθ)1- 1 \leqslant \cos (x - \theta ) \leqslant 1 and get the answer.

Complete step by step solution:
We are given a trigonometric function 13cosx+33sinx413\cos x + 3\sqrt 3 \sin x - 4
We need to determine the range of this function.
Let f(x)=13cosx+33sinx4f(x) = 13\cos x + 3\sqrt 3 \sin x - 4
A range of a function ffwould be the set of all the outcomes or outputs for the various inputs in its domain. It is
Domain of a function ffis the set of all possible values on which ffcan be applied.
This means if xxis a variable, then it is possible that for some values of xx, the function is not defined.
We would be simplifying the given function to ease the process of finding the range.
We can see that132+(33)2=169+27=196=142{13^2} + {(3\sqrt 3 )^2} = 169 + 27 = 196 = {14^2}
Therefore, we multiply and divide by 14 throughout the expression of the given function
Then, we get
f(x)=13cosx+33sinx4 =14(1314cosx+3314sinx)4..............(1)  f(x) = 13\cos x + 3\sqrt 3 \sin x - 4 \\\ = 14(\dfrac{{13}}{{14}}\cos x + \dfrac{{3\sqrt 3 }}{{14}}\sin x) - 4..............(1) \\\
Now, we can observe that (1314)2+(3314)2=169196+27196=196196=1{(\dfrac{{13}}{{14}})^2} + {(\dfrac{{3\sqrt 3 }}{{14}})^2} = \dfrac{{169}}{{196}} + \dfrac{{27}}{{196}} = \dfrac{{196}}{{196}} = 1
This implies that (1314,3314)(\dfrac{{13}}{{14}},\dfrac{{3\sqrt 3 }}{{14}})is a point on the unit circlex2+y2=1{x^2} + {y^2} = 1
Let us recall a fact here: For every point P(x,y)P(x,y)on the unit circlex2+y2=1{x^2} + {y^2} = 1there exists θ[0,2π)\theta \in [0,2\pi ) such that x=cosθx = \cos \theta and y=sinθy = \sin \theta.
Therefore, for the point (1314,3314)(\dfrac{{13}}{{14}},\dfrac{{3\sqrt 3 }}{{14}}), there exists θ[0,2π)\theta \in [0,2\pi )such that 1314=cosθ\dfrac{{13}}{{14}} = \cos \theta and 3314=sinθ\dfrac{{3\sqrt 3 }}{{14}} = \sin \theta .
Then, on substituting in equation (1), we get
f(x)=14(cosθcosx+sinθsinx)4 =14(cosxcosθ+sinxsinθ)4  f(x) = 14(\cos \theta \cos x + \sin \theta \sin x) - 4 \\\ = 14(\cos x\cos \theta + \sin x\sin \theta ) - 4 \\\
Here we have rearranged the cosine and sine values. We can do this because they are real numbers.
We will use the angle difference identity:
cos(AB)=cosAcosBsinAsinB\cos (A - B) = \cos A\cos B - \sin A\sin B
Thenf(x)=14(cos(xθ))4f(x) = 14(\cos (x - \theta )) - 4
Now, we know that the range of cosθ\cos \theta is [1,1][ - 1,1] for any angle θ\theta
That is, 1cosθ1- 1 \leqslant \cos \theta \leqslant 1 for any angle θ\theta
Therefore,
1cos(xθ)1- 1 \leqslant \cos (x - \theta ) \leqslant 1
Multiplying 14 throughout the expression, we get
1414cos(xθ)14- 14 \leqslant 14\cos (x - \theta ) \leqslant 14
Subtracting 4 from each value, we get
\-14+414cos(xθ)+414+4 1814cos(xθ)+418  \- 14 + 4 \leqslant 14\cos (x - \theta ) + 4 \leqslant 14 + 4 \\\ \Rightarrow - 18 \leqslant 14\cos (x - \theta ) + 4 \leqslant 18 \\\
Hence, the range of f(x)=13cosx+33sinx4 f(x) = 13\cos x + 3\sqrt 3 \sin x - 4 is [18,18][ - 18,18].

Note: The inequality in the final step means that every real number between -18 and 18 belongs to the range of f(x)=13cosx+33sinx4f(x) = 13\cos x + 3\sqrt 3 \sin x - 4. Therefore, writing {-18, 18} as an answer is completely wrong.
Here, [18,18][ - 18,18] indicates the closed interval taking every value from -18 to 18.