Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

Find the radian measures corresponding to the following degree measures (i) 25° (ii) - 47° 30' (iii) 240° (iv) 520°

Answer

(i) 25°\text{(i) 25°}
We know that 180° = π radian\text{We\, know\, that\, 180° = π\, radian}
25°=π180×25radian=5π36radian∴ 25° = \frac{π}{180} × 25\,radian = \frac{5π }{36} \,radian


(i) -47°30\text{(i) -47°30}'

47°304712degree[1°=60]–47° 30' -47\frac{1}{2}\,\,degree \,[1° = 60']

=952degree=\frac{-95}{2} \,degree

Since180°=πradianSince \,180° = π \,radian

Since180°=πradianSince \,180° = π\, radian

952degree=π180×(952)radian=(1936×2)πradian=1972πradian\frac{-95}{2} \,degree = \frac{π}{180}×(\frac{-95}{2})\,radian = (\frac{-19}{36 × 2}) π \,radian = \frac{-19}{72 }π \,radian

47°30=1972πradian∴ -47° 30' = -\frac{19}{72} π\,radian


(iii) 240°\text{(iii) 240°}
We know that 180° = π radian\text{We \,know \,that \,180° = π \,radian}
240°=π180×240radian=43πradian∴ 240° = \frac{π}{180}×240 \,radian = \frac{4}{3}π \,radian


(iv) 520°\text{(iv) 520°}
We know that 180° = π radian\text{We\, know\, that \,180° = π\, radian}
520°=π180×520radian=26π9radian∴ 520° = \frac{π}{180}×520 \,radian = \frac{26π}{9} \,radian