Solveeit Logo

Question

Question: Find the radian measure corresponding to the following degree measures \(\left( \text{use }\pi =\dfr...

Find the radian measure corresponding to the following degree measures (use π=227)\left( \text{use }\pi =\dfrac{22}{7} \right).
(i) 300{{300}^{\circ }}
(ii) 35{{35}^{\circ }}

Explanation

Solution

Hint: As we know that the relation between radians and degree is always represented by (π)c=180{{\left( \pi \right)}^{c}}={{180}^{\circ }}. Therefore by dividing the expression by 180180 to both the denominators the we get the other relation between radians and degree and that is (π180)c=(180180){{\left( \dfrac{\pi }{180} \right)}^{c}}={{\left( \dfrac{180}{180} \right)}^{\circ }} which after simplifying results into (π180)c=(1){{\left( \dfrac{\pi }{180} \right)}^{c}}={{\left( 1 \right)}^{\circ }}.

Complete step-by-step answer:

(i) Now, we will consider the degree 300{{300}^{\circ }} and we will convert it into radian. We will do this with the help of the formula which is given by (π180)c=(1){{\left( \dfrac{\pi }{180} \right)}^{c}}={{\left( 1 \right)}^{\circ }}. Therefore, we have 300=300×(1){{300}^{\circ }}=300\times {{\left( 1 \right)}^{\circ }}. By substituting the value of (1){{\left( 1 \right)}^{\circ }} we will have,
300=300×(1) 300=300×(π180)c \begin{aligned} & {{300}^{\circ }}=300\times {{\left( 1 \right)}^{\circ }} \\\ & \Rightarrow {{300}^{\circ }}=300\times {{\left( \dfrac{\pi }{180} \right)}^{c}} \\\ \end{aligned}
This can be written as 300=(300×π180)c{{300}^{\circ }}={{\left( 300\times \dfrac{\pi }{180} \right)}^{c}}. Therefore we get,
300=(300×π180)c 300=(5×π3)c 300=(5π3)c \begin{aligned} & {{300}^{\circ }}={{\left( 300\times \dfrac{\pi }{180} \right)}^{c}} \\\ & \Rightarrow {{300}^{\circ }}={{\left( 5\times \dfrac{\pi }{3} \right)}^{c}} \\\ & \Rightarrow {{300}^{\circ }}={{\left( \dfrac{5\pi }{3} \right)}^{c}} \\\ \end{aligned}
Now we will substitute π=227\pi =\dfrac{22}{7} in this equation. Thus, we get
300=(5π3)c 300=(53×π)c 300=(53×227)c 300=(11021)c \begin{aligned} & {{300}^{\circ }}={{\left( \dfrac{5\pi }{3} \right)}^{c}} \\\ & \Rightarrow {{300}^{\circ }}={{\left( \dfrac{5}{3}\times \pi \right)}^{c}} \\\ & \Rightarrow {{300}^{\circ }}={{\left( \dfrac{5}{3}\times \dfrac{22}{7} \right)}^{c}} \\\ & \Rightarrow {{300}^{\circ }}={{\left( \dfrac{110}{21} \right)}^{c}} \\\ \end{aligned}
Hence, we get 300=(11021)c{{300}^{\circ }}={{\left( \dfrac{110}{21} \right)}^{c}} or 300=(5.238)c{{300}^{\circ }}={{\left( 5.238 \right)}^{c}} in decimals.
(ii) Similarly we will now consider the degree 35{{35}^{\circ }} and we will convert it into radian. We will do this with the help of the formula which is given by (π180)c=(1){{\left( \dfrac{\pi }{180} \right)}^{c}}={{\left( 1 \right)}^{\circ }}. Therefore, we have 35=35×(1){{35}^{\circ }}=35\times {{\left( 1 \right)}^{\circ }}. By substituting the value of (1){{\left( 1 \right)}^{\circ }} we will have,
35=35×(1) 35=35×(π180)c \begin{aligned} & {{35}^{\circ }}=35\times {{\left( 1 \right)}^{\circ }} \\\ & \Rightarrow {{35}^{\circ }}=35\times {{\left( \dfrac{\pi }{180} \right)}^{c}} \\\ \end{aligned}
This can be written as 35=(35×π180)c{{35}^{\circ }}={{\left( 35\times \dfrac{\pi }{180} \right)}^{c}}. Therefore we get,
35=(35×π180)c 35=(7×π36)c 35=(7π36)c \begin{aligned} & {{35}^{\circ }}={{\left( 35\times \dfrac{\pi }{180} \right)}^{c}} \\\ & \Rightarrow {{35}^{\circ }}={{\left( 7\times \dfrac{\pi }{36} \right)}^{c}} \\\ & \Rightarrow {{35}^{\circ }}={{\left( \dfrac{7\pi }{36} \right)}^{c}} \\\ \end{aligned}
Now we will substitute π=227\pi =\dfrac{22}{7} in this equation. Thus, we get
35=(7π36)c 35=(736×π)c 35=(736×227)c 35=(128×111)c 35=(1128)c \begin{aligned} & {{35}^{\circ }}={{\left( \dfrac{7\pi }{36} \right)}^{c}} \\\ & \Rightarrow {{35}^{\circ }}={{\left( \dfrac{7}{36}\times \pi \right)}^{c}} \\\ & \Rightarrow {{35}^{\circ }}={{\left( \dfrac{7}{36}\times \dfrac{22}{7} \right)}^{c}} \\\ & \Rightarrow {{35}^{\circ }}={{\left( \dfrac{1}{28}\times \dfrac{11}{1} \right)}^{c}} \\\ & \Rightarrow {{35}^{\circ }}={{\left( \dfrac{11}{28} \right)}^{c}} \\\ \end{aligned}
Hence, we get 35=(1128)c{{35}^{\circ }}={{\left( \dfrac{11}{28} \right)}^{c}} or 35=0.3928c{{35}^{\circ }}={{0.3928}^{c}} in decimals.

Hence, the degree 300=(11021)c{{300}^{\circ }}={{\left( \dfrac{110}{21} \right)}^{c}} is in radians and the degree 35=(1128)c{{35}^{\circ }}={{\left( \dfrac{11}{28} \right)}^{c}} is in radians.

Note: Alternatively we can solve it directly substituting (π)\left( \pi \right) as 3.143.14. By this we will get the solution in the way as done below.
300=(5π3)c 300=(53×3.14)c \begin{aligned} & {{300}^{\circ }}={{\left( \dfrac{5\pi }{3} \right)}^{c}} \\\ & \Rightarrow {{300}^{\circ }}={{\left( \dfrac{5}{3}\times 3.14 \right)}^{c}} \\\ \end{aligned}
For solving it further we will use BODMASS rule in which we will divide first and then multiply the terms together. Thus we get
300=(1.66×3.14)c 300=(5.2124)c \begin{aligned} & \Rightarrow {{300}^{\circ }}={{\left( 1.66\times 3.14 \right)}^{c}} \\\ & \Rightarrow {{300}^{\circ }}={{\left( 5.2124 \right)}^{c}} \\\ \end{aligned}
Alternatively we can put the direct value of (1)=(0.0174)c{{\left( 1 \right)}^{\circ }}={{\left( 0.0174 \right)}^{c}} in the expression 300=(300)×(1) 300=(300)×(1) 300=300×(0.0174)c 300=(5.22)c \begin{aligned} & {{300}^{\circ }}=\left( 300 \right)\times {{\left( 1 \right)}^{\circ }} \\\ & \Rightarrow {{300}^{\circ }}=\left( 300 \right)\times {{\left( 1 \right)}^{\circ }} \\\ & \Rightarrow {{300}^{\circ }}=300\times {{\left( 0.0174 \right)}^{c}} \\\ & \Rightarrow {{300}^{\circ }}={{\left( 5.22 \right)}^{c}} \\\ \end{aligned}
Similarly we can apply this procedure to 35=(1128)c{{35}^{\circ }}={{\left( \dfrac{11}{28} \right)}^{c}}.