Solveeit Logo

Question

Question: Find the radian measure corresponding to the degree \( - 47^\circ 30'\). (A)\(\dfrac{{ - 19\pi }}{...

Find the radian measure corresponding to the degree 4730 - 47^\circ 30'.
(A)19π72rad\dfrac{{ - 19\pi }}{{72}}rad
(B) 19π72rad\dfrac{{19\pi }}{{72}}rad
(C) 13π72rad\dfrac{{13\pi }}{{72}}rad
(D) None of these

Explanation

Solution

Convert 3030' into degrees using 1=1601' = \dfrac{1}{{60}}^\circ to get4730=952- 47^\circ 30' = - \dfrac{{95}}{2}^\circ. Find the degree measure of 952- \dfrac{{95}}{2}^\circ using1=π180rad1^\circ = \dfrac{\pi }{{180}}rad to get the answer.

Complete step by step solution:
We are given the degree 4730 - 47^\circ 30'.
We need to find its radian measure.
We know that 1=π180rad1^\circ = \dfrac{\pi }{{180}}rad.
We also know that 1=601^\circ = 60'. This would imply that 1=1601' = \dfrac{1}{{60}}^\circ
We will first convert the minute part 3030' of the degree 4730 - 47^\circ 30' into degrees.
Now, 30=30×160=1230' = 30 \times \dfrac{1}{{60}}^\circ = \dfrac{1}{2}^\circ .
Therefore, we have 4730=(47+12)=(47+.12)=952- 47^\circ 30' = - (47^\circ + \dfrac{1}{2}^\circ ) = - (47 + .\dfrac{1}{2})^\circ = - \dfrac{{95}}{2}^\circ
So, to find the radian measure of the degree 4730 - 47^\circ 30', we will find the radian measure of the degree952- \dfrac{{95}}{2}^\circ.
Now 1=π180rad952=(952×π180)rad=19π72rad1^\circ = \dfrac{\pi }{{180}}rad \Rightarrow - \dfrac{{95}}{2}^\circ = - (\dfrac{{95}}{2} \times \dfrac{\pi }{{180}})rad = - \dfrac{{19\pi }}{{72}}rad
Hence the radian measure corresponding to the degree 4730 - 47^\circ 30'is 19π72rad - \dfrac{{19\pi }}{{72}}rad.
So option A is the right answer

Note: 1) To find the degree measure of a radian, we can use the formula1rad=180π1rad = \dfrac{{180}}{\pi }^\circ
2) The single apostrophe (‘) stands for minutes and the double quotation mark (“) stands for seconds.
Therefore, it is read as “47 degrees, 30 minutes, and 23 seconds”.