Solveeit Logo

Question

Question: Find the quadratic equation having one root : \(2\sqrt{3}-4\) . A. \({{x}^{2}}-4\sqrt{2}x-4=0\) ...

Find the quadratic equation having one root : 2342\sqrt{3}-4 .
A. x242x4=0{{x}^{2}}-4\sqrt{2}x-4=0
B. x28x+4=0{{x}^{2}}-8x+4=0
C. x2+42x4=0{{x}^{2}}+4\sqrt{2}x-4=0
D. x2+8x+4=0{{x}^{2}}+8x+4=0

Explanation

Solution

We are asked to find the quadratic equation, with the given one root. To find this first we need to know about complex and conjugate root theorem which states that: If the root given is a surd of the form of the (ab)\left( a-\sqrt{b} \right) is also a root. So, here we will take (4+23)\left( -4+2\sqrt{3} \right) and (423)\left( -4-2\sqrt{3} \right) as two roots and find the sum of the roots (α+β)\left( \alpha +\beta \right) and product of the roots (αβ)\left( \alpha \beta \right) to find the quadratic equation with the help of standard form of quadratic equation ax2+bx+c=0a{{x}^{2}}+bx+c=0 .

Complete step-by-step solution:
In the question, we are asked to find the quadratic equation whose one root is (234)\left( 2\sqrt{3}-4 \right). To find the quadratic equation we need two roots, If the given root is complex, then its conjugate is the other root. So, if (a+b)\left( a+\sqrt{b} \right) is a root, then (ab)\left( a-\sqrt{b} \right) is also another root.
We know that (234)=(4+23)\left( 2\sqrt{3}-4 \right)=\left( -4+2\sqrt{3} \right) is an irrational root so, (234)=(423)\left( -2\sqrt{3}-4 \right)=\left( -4-2\sqrt{3} \right) will be a conjugate root.
We know that the quadratic equation in general from is given by ax2+bx+c=0a{{x}^{2}}+bx+c=0 and if the denote the two roots of the equation as α,β\alpha ,\beta then the sum and product if the roots is given by ;
(α+β)=ba (αβ)=ca \begin{aligned} & \left( \alpha +\beta \right)=\dfrac{-b}{a} \\\ & \left( \alpha \beta \right)=\dfrac{c}{a} \\\ \end{aligned}
We know that (α+β)\left( \alpha +\beta \right) where α\alpha and β\beta are two roots we can formulate the quadratic equation as;
x2(α+β)x+αβ=0\Rightarrow {{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta =0
So we have
((234)+(234))=α+β\Rightarrow \left( \left( 2\sqrt{3}-4 \right)+\left( -2\sqrt{3}-4 \right) \right)=\alpha +\beta
4+23+(423)=α+β 44+2323=α+β 8=α+β \begin{aligned} & \Rightarrow -4+2\sqrt{3}+\left( -4-2\sqrt{3} \right)=\alpha +\beta \\\ & \Rightarrow -4-4+2\sqrt{3}-2\sqrt{3}=\alpha +\beta \\\ & \Rightarrow -8=\alpha +\beta \\\ \end{aligned}
We also have;
(4+23)(423)=αβ (4+23)(4+23)=αβ (423)(4+23)=αβ \begin{aligned} & \Rightarrow \left( -4+2\sqrt{3} \right)\left( -4-2\sqrt{3} \right)=\alpha \beta \\\ & \Rightarrow -\left( -4+2\sqrt{3} \right)\left( 4+2\sqrt{3} \right)=\alpha \beta \\\ & \Rightarrow \left( 4-2\sqrt{3} \right)\left( 4+2\sqrt{3} \right)=\alpha \beta \\\ \end{aligned}
We know that (a+b)(ab)=a2b2\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}} , we will apply it in the above equation.
So, (423)(423)=((4)2(23)2)=αβ\left( 4-2\sqrt{3} \right)\left( 4-2\sqrt{3} \right)=-\left( {{\left( 4 \right)}^{2}}-{{\left( 2\sqrt{3} \right)}^{2}} \right)=\alpha \beta
1612=αβ 4=αβ αβ=4 \begin{aligned} & \Rightarrow 16-12=\alpha \beta \\\ & \Rightarrow 4=\alpha \beta \\\ & \therefore \alpha \beta =4 \\\ \end{aligned}
We use the formula to make quadratic with sum and product of the roots as;
x2(α+β)x+αβ=0 (1)x2(8)x+4=0 x2+8x+4=0 \begin{aligned} & \Rightarrow {{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta =0 \\\ & \Rightarrow \left( 1 \right){{x}^{2}}-\left( -8 \right)x+4=0 \\\ & \therefore {{x}^{2}}+8x+4=0 \\\ \end{aligned}
The quadratic equation of the given root is x2+8x+4=0{{x}^{2}}+8x+4=0.
Hence, the option (D) is the correct answer.

Note: A quadratic equation is any equation that can be rearranged in standard form as QE=ax2+bx+c=0QE=a{{x}^{2}}+bx+c=0 where x represents an unknown, and a, b, c represent known numbers, where a0a\ne 0 . A quadratic equation always has two roots, if complex roots are included and a double root is counted for two. A quadratic equation can be factored into an equivalent equation ax2+bx+c=(xr)(xs)a{{x}^{2}}+bx+c=\left( x-r \right)\left( x-s \right) where r and s are the zeros or roots of quadratic equation.