Solveeit Logo

Question

Mathematics Question on Vector Algebra

Find the projection of the vector i^j^\hat{i}-\hat{j} on the vector i^+j^\hat{i}+\hat{j}.

Answer

The correct answer is: 0
Let a=i^j^\vec{a}=\hat{i}-\hat{j} and b=i^+j^\vec{b}=\hat{i}+\hat{j}
Now,projection of a\vec{a} on b\vec{b} is given by,
1b(a.b)=11+1[1.1+(1)(1)]=12(11)=0\frac{1}{|\vec{b}|}(\vec{a}.\vec{b})=\frac{1}{\sqrt{1+1}}[1.1+(-1)(1)]=\frac{1}{\sqrt{2}}(1-1)=0
Hence,the projection of vector a\vec{a} and b\vec{b} is 0.